216 research outputs found
Self-adjoint symmetry operators connected with the magnetic Heisenberg ring
We consider symmetry operators a from the group ring C[S_N] which act on the
Hilbert space H of the 1D spin-1/2 Heisenberg magnetic ring with N sites. We
investigate such symmetry operators a which are self-adjoint (in a sence
defined in the paper) and which yield consequently observables of the
Heisenberg model. We prove the following results: (i) One can construct a
self-adjoint idempotent symmetry operator from every irreducible character of
every subgroup of S_N. This leads to a big manifold of observables. In
particular every commutation symmetry yields such an idempotent. (ii) The set
of all generating idempotents of a minimal right ideal R of C[S_N] contains one
and only one idempotent which ist self-adjoint. (iii) Every self-adjoint
idempotent e can be decomposed into primitive idempotents e = f_1 + ... + f_k
which are also self-adjoint and pairwise orthogonal. We give a computer
algorithm for the calculation of such decompositions. Furthermore we present 3
additional algorithms which are helpful for the calculation of self-adjoint
operators by means of discrete Fourier transforms of S_N. In our investigations
we use computer calculations by means of our Mathematica packages PERMS and
HRing.Comment: 13 page
An alternative approach to the construction of Schur-Weyl transform
We propose an alternative approach for the construction of the unitary matrix
which performs generalized unitary rotations of the system consisting of
independent identical subsystems (for example spin system). This matrix, when
applied to the system, results in a change of degrees of freedom, uncovering
the information hidden in non-local degrees of freedom. This information can be
used, inter alia, to study the structure of entangled states, their
classification and may be useful for construction of quantum algorithms.Comment: 6 page
Quantum interface unbinding transitions
We consider interfacial phenomena accompanying bulk quantum phase transitions
in presence of surface fields. On general grounds we argue that the surface
contribution to the system free energy involves a line of singularities
characteristic of an interfacial phase transition, occurring below the bulk
transition temperature T_c down to T=0. This implies the occurrence of an
interfacial quantum critical regime extending into finite temperatures and
located within the portion of the phase diagram where the bulk is ordered. Even
in situations, where the bulk order sets in discontinuously at T=0, the
system's behavior at the boundary may be controlled by a divergent length scale
if the tricritical temperature is sufficiently low. Relying on an effective
interfacial model we compute the surface phase diagram in bulk spatial
dimensionality and extract the values of the exponents describing the
interfacial singularities in
Drying of a Microdroplet of Water Suspension of Nanoparticles: from Surface Aggregates to Microcrystal
The method of formation of nanoparticle aggregates such as high-coverage
spherical shells of microspheres or 3-D micro crystals grown in the geometry
unaffected by a substrate is described. In the reported experiment, the
evaporation of single levitated water droplet containing 200 nm diameter
polystyrene spheres was studied. Successive stages of the drying process were
discussed by analyzing the intensity of light elastically scattered by the
evaporating droplet. The numerically simulated self-assembly coincides nicely
with the observed morphologies resulting from transformation of a droplet of
suspension into a solid microcrystal via kinetically driven self-assembly of
nanostructures.Comment: 5 pages, 6 figure
5-Fluoro-1,3-dihydro-2,1-benzoxaborol-1-ol
In the crystal structure of the title compound, C7H6BFO2, a broad-spectrum antifungal drug (AN2690), the planar [maximum deviation 0.035 (1) Å] molecules form centrosymmetric R
2
2(8) dimers via strong O—H⋯O hydrogen bonds. The dimers are arranged into layers by weak intermolecular C—H⋯O and C—H⋯F hydrogen bonds. The symmetry of this two-dimensional supramolecular assembly can be described by the layer group p
and topologically classified as a simple uninodal four-connected two-dimensional network of a (4.4.4.4.6.6) topology. Further weak C—H⋯O interactions build up the three-dimensional structure
Impact of phonons on dephasing of individual excitons in deterministic quantum dot microlenses
Optimized light-matter coupling in semiconductor nanostructures is a key to
understand their optical properties and can be enabled by advanced fabrication
techniques. Using in-situ electron beam lithography combined with a
low-temperature cathodoluminescence imaging, we deterministically fabricate
microlenses above selected InAs quantum dots (QDs) achieving their efficient
coupling to the external light field. This enables to perform four-wave mixing
micro-spectroscopy of single QD excitons, revealing the exciton population and
coherence dynamics. We infer the temperature dependence of the dephasing in
order to address the impact of phonons on the decoherence of confined excitons.
The loss of the coherence over the first picoseconds is associated with the
emission of a phonon wave packet, also governing the phonon background in
photoluminescence (PL) spectra. Using theory based on the independent boson
model, we consistently explain the initial coherence decay, the zero-phonon
line fraction, and the lineshape of the phonon-assisted PL using realistic
quantum dot geometries
Renormalized phi^6 model for quantum phase transitions in systems of itinerant fermions
We study the impact of quantum and thermal fluctuations on properties of
quantum phase transitions occurring in systems of itinerant fermions with main
focus on the order of these transitions. Our approach is based on a set of flow
equations derived within the functional renormalization group framework, in
which the order parameter is retained as the only degree of freedom, and where
the effective potential is parametrized with a phi^6 form allowing for both
first and second order scenarios. We find a tendency to turn the first order
transitions within the bare model into second order transitions upon accounting
for the order parameter fluctuations. We compute the first and second order
phase boundary lines T_c as a function of a non-thermal control parameter a_2
in the vicinity of a quantum phase transition. We analyze crossovers of the
shift exponent psi governing the shape of the T_c line when the system is tuned
close to a quantum tricritical scenario, where a second order phase transition
line terminates at a quantum tricritical point.Comment: 12 page
- …