3,849 research outputs found
Quantum Horn's lemma, finite heat baths, and the third law of thermodynamics
Interactions of quantum systems with their environment play a crucial role in
resource-theoretic approaches to thermodynamics in the microscopic regime.
Here, we analyze the possible state transitions in the presence of "small" heat
baths of bounded dimension and energy. We show that for operations on quantum
systems with fully degenerate Hamiltonian (noisy operations), all possible
state transitions can be realized exactly with a bath that is of the same size
as the system or smaller, which proves a quantum version of Horn's lemma as
conjectured by Bengtsson and Zyczkowski. On the other hand, if the system's
Hamiltonian is not fully degenerate (thermal operations), we show that some
possible transitions can only be performed with a heat bath that is unbounded
in size and energy, which is an instance of the third law of thermodynamics. In
both cases, we prove that quantum operations yield an advantage over classical
ones for any given finite heat bath, by allowing a larger and more physically
realistic set of state transitions.Comment: 15+4 pages, 6 figures. Version accepted for publication in Quantu
Beam Imaging and Luminosity Calibration
We discuss a method to reconstruct two-dimensional proton bunch densities
using vertex distributions accumulated during LHC beam-beam scans. The -
correlations in the beam shapes are studied and an alternative luminosity
calibration technique is introduced. We demonstrate the method on simulated
beam-beam scans and estimate the uncertainty on the luminosity calibration
associated to the beam-shape reconstruction to be below 1\%.Comment: Figures added, typos correcte
Femtosecond photoelectron and photoion spectrometer with vacuum ultraviolet probe pulses
We describe a setup to study ultrafast dynamics in gas-phase molecules using
time-resolved photoelectron and photoion spectroscopy. The vacuum ultraviolet
(VUV) probe pulses are generated via strong field high-order harmonic
generation from infrared femtosecond laser pulses. The band pass characteristic
in transmission of thin indium (In) metal foil is exploited to isolate the
harmonic of the 800 nm fundamental (H9, 14 eV, 89 nm) from all
other high harmonics. The harmonic is obtained with high
conversion efficiencies and has sufficient photon energy to access the complete
set of valence electron levels in most molecules. The setup also allows for
direct comparison of VUV single-photon probe with 800 nm multi-photon probe
without influencing the delay of excitation and probe pulse or the beam
geometry. We use a magnetic bottle spectrometer with high collection efficiency
for electrons, serving at the same time as a time of flight spectrometer for
ions. Characterization measurements on Xe reveal the spectral width of H9 to be
meV and a photon flux of photons/pulse after
spectral filtering. As a first application, we investigate the S excitation
of perylene using time-resolved ion spectra obtained with multi-photon probing
and time-resolved electron spectra from VUV single-photon probing. The time
resolution extracted from cross-correlation measurements is fs for
both probing schemes and the pulse duration of H9 is found to be fs
Transport and magnetic properties of La_(1-x)Ca_xMnO_3-films (0.1<x<0.9)
By laser ablation we prepared thin films of the colossal magnetoresistive
compound La_(1-x)Ca_xMnO_3 with doping levels 0.1<x<0.9 on MgO substrates.
X-ray diffraction revealed epitaxial growth and a systematic decrease of the
lattice constants with doping. The variation of the transport and magnetic
properties in this doping series was investigated by SQUID magnetization and
electrical transport measurements. For the nonmetallic samples resistances up
to 10^13 Ohm have been measured with an electrometer setup. While the transport
data indicate polaronic transport for the metallic samples above the Curie
temperature the low doped ferromagnetic insulating samples show a variable
range hopping like transport at low temperature.Comment: 2 pages, 3 EPS figures, LT22 Proceedings to appear in Physica
Oscillatory motion of a droplet in an active poroelastic two-phase model
We investigate flow-driven amoeboid motility as exhibited by microplasmodia
of Physarum polycephalum. A poroelastic two-phase model with rigid boundaries
is extended to the case of free boundaries and substrate friction. The
cytoskeleton is modeled as an active viscoelastic solid permeated by a fluid
phase describing the cytosol. A feedback loop between a chemical regulator,
active mechanical deformations, and induced flows gives rise to oscillatory and
irregular motion accompanied by spatio-temporal contraction patterns. We cover
extended parameter regimes of active tension and substrate friction by
numerical simulations in one spatial dimension and reproduce experimentally
observed oscillation periods and amplitudes. In line with experiments, the
model predicts alternating forward and backward ectoplasmatic flow at the
boundaries with reversed flow in the center. However, for all cases of periodic
and irregular motion, we observe practically no net motion. A simple
theoretical argument shows that directed motion is not possible with a
spatially independent substrate friction
Compact DC Modelling of Short-Channel Effects in Organic Thin-Film Transistors
Els transistors orgànics de capa fina (TFT) són dispositius prometedors per a les pantalles flexibles de matriu activa i
els conjunts de sensors, ja que poden fabricar-se a temperatures de procés relativament baixes i, per tant, no sols en
vidre, sinó també en substrats polimèrics. Per a millorar el rendiment dinàmic dels dispositius i circuits TFT , una
reducció agressiva de la longitud de canal provoca efectes extrínsecs en els dispositius que han de ser capturats per
models compactes.
Aquesta tesi presenta models analítics, basats en la física, de la degradació de la pendent subumbral, el roll-off del
voltatge llindar i l'efecte DIBL en TFTs coplanars i escalonats que poden ser implementats en qualsevol model
compacte de corrent continu arbitrari que estigui definit pel voltatge llindar i la pendent subumbral. Per tant, l'equació
diferencial de Laplace es resol per a la geometria coplanar i escalonada aplicant la transformación Schwarz-Cristoffel.
Les solucions del potencial serveixen de base per a la definició de les equacions del model. A més, es desenvolupen
models compactes de les barreres Schottky dependents de la polarització en les interfícies font/semiconductor i
drenador/semiconductor en els TFT coplanars i escalonats, que modelen la injecció i l'ejecció de portadors de càrrega,
respectivament, com a corrent d'emissió termoiònica.Los transistores orgánicos de capa fina (TFT) son dispositivos prometedores para las pantallas flexibles de matriz
activa y los conjuntos de sensores, ya que pueden fabricarse a temperaturas de proceso relativamente bajas y, por
tanto, no sólo en vidrio, sino también en sustratos poliméricos. Para mejorar el rendimiento dinámico de los
dispositivos y circuitos TFT, una reducción agresiva de la longitud de los canales provoca efectos extrínsecos en los
dispositivos que tienen que ser capturados por modelos compactos.
Esta tesis presenta modelos analíticos, basados en la física, de la degradación de la pendiente subumbral, el roll-off
del voltaje umbral y el efecto DIBL en TFTs coplanares y escalonados que pueden ser implementados en cualquier
modelo compacto de corriente continua arbitrario que esté definido por el voltaje umbral y la pendiente subumbral. Por
lo tanto, la ecuación diferencial de Laplace se resuelve para la geometría coplanar y escalonada aplicando la
transformación Schwarz-Christoffel. Las soluciones del potencial sirven de base para la definición de las ecuaciones
del modelo. Además, se desarrollan modelos compactos de las barreras Schottky dependientes de la polarización en
las interfaces fuente/semiconductor y drenador/semiconductor en los TFT coplanares y escalonados, que modelan la
inyección y la eyección de portadores de carga, respectivamente, como corriente de emisión termoiónicaOrganic thin-film transistors (TFTs) are promising devices for flexible active-matrix displays and sensor arrays, since
they can be fabricated at relatively low process temperatures and thus not only on glass, but also on polymeric
substrates. In order to improve the dynamic TFT and circuit performance, an aggressive reduction of the channel
length causes extrinsic de-vice effects that have to be captured by compact models.
This dissertation presents analytical, physics-based models of the subthreshold-swing degra-dation, the thresholdvoltage
roll-off and DIBL effects in coplanar and staggered TFTs that can be implemented in any arbitrary compact dc
model that are defined by the threshold voltage and the subthreshold swing. Therefore, Laplace’s differential equation
is solved for the coplanar and staggered geometry by applying the Schwarz-Christoffel transformation. The potential
solutions serve as a basis for the definition of the model equations. Further-more, compact models of the biasdependent
Schottky barriers at the source/semiconductor and drain/semiconductor interfaces in coplanar and
staggered TFTs are derived, which model the charge carriers injection and ejection, respectively, as thermionic
emission cur-rent. Thereby, in case of the source barrier, the Schottky barrier lowering effect due to im-age charges is
captured and therefore, an analytical expression of the electric field at the source barrier is derived
Second gradient electromagnetostatics: electric point charge, electrostatic and magnetostatic dipoles
In this paper, we study the theory of second gradient electromagnetostatics
as the static version of second gradient electrodynamics. The theory of second
gradient electrodynamics is a linear generalization of higher order of
classical Maxwell electrodynamics whose Lagrangian is both Lorentz and
U(1)-gauge invariant. Second gradient electromagnetostatics is a gradient field
theory with up to second-order derivatives of the electromagnetic field
strengths in the Lagrangian. Moreover, it possesses a weak nonlocality in space
and gives a regularization based on higher-order partial differential
equations. From the group theoretical point of view, in second gradient
electromagnetostatics the (isotropic) constitutive relations involve an
invariant scalar differential operator of fourth order in addition to scalar
constitutive parameters. We investigate the classical static problems of an
electric point charge, and electric and magnetic dipoles in the framework of
second gradient electromagnetostatics, and we show that all the electromagnetic
fields (potential, field strength, interaction energy, interaction force) are
singularity-free unlike the corresponding solutions in the classical Maxwell
electromagnetism as well as in the Bopp-Podolsky theory. The theory of second
gradient electromagnetostatics delivers a singularity-free electromagnetic
field theory with weak spatial nonlocality.Comment: 32 pages, 7 figure
- …