24 research outputs found

    Geomorphic and sedimentary signatures of catastrophic glacier detachments: A first assessment from Flat Creek, Alaska

    Full text link
    Large-volume detachments of low-angle mountain glaciers involve the sudden mobilization of large amounts of glacier ice and lithic material in long-runout mass flows. Scientific investigations of these events have only recently brought to light their global occurrence and the similarities in the conditions under which they occur. While this recent research suggests that glacier detachments may become more frequent in a warming climate, a long-term record is largely lacking. Knowledge of the geomorphic signatures of glacier detachments could help establish such a record. Here, we present the first geomorphic and sedimentary assessment of a glacier detachment deposit. We investigate the landscape impacts of the Flat Creek glacier detachments in Alaska's St. Elias mountains through a combination of remote sensing analyses, field observations, Electrical Resistivity Tomography, and grain size and grain orientation analyses. From these data, we outline a land-system model that may help identify past glacier detachments elsewhere. Some of the most distinguishing features we documented were large bodies of buried ice-conglomerates, a rapid response of the remnant glacier ice, clusters of small-scale thermokarst ponds, countless molards, parallel striations etched into the hillslope and individual clasts, and a very long runout distance. We assess these features in terms of their longevity in the landscape and compare them to what has been described at glacier detachment sites elsewhere. Finally, we discuss to what extent glacier detachment deposits can be distinguished from deposits left by rock(−ice) avalanches, debris flows, and surging glaciers, and show that a differentiation is possible if detailed field investigations are undertaken

    Greenland and Canadian Arctic ice temperature profiles database

    Full text link
    Here, we present a compilation of 95 ice temperature profiles from 85 boreholes from the Greenland ice sheet and peripheral ice caps, as well as local ice caps in the Canadian Arctic. Profiles from only 31 boreholes (36 %) were previously available in open-access data repositories. The remaining 54 borehole profiles (64 %) are being made digitally available here for the first time. These newly available profiles, which are associated with pre-2010 boreholes, have been submitted by community members or digitized from published graphics and/or data tables. All 95 profiles are now made available in both absolute (meters) and normalized (0 to 1 ice thickness) depth scales and are accompanied by extensive metadata. These metadata include a transparent description of data provenance. The ice temperature profiles span 70 years, with the earliest profile being from 1950 at Camp VI, West Greenland. To highlight the value of this database in evaluating ice flow simulations, we compare the ice temperature profiles from the Greenland ice sheet with an ice flow simulation by the Parallel Ice Sheet Model (PISM). We find a cold bias in modeled near-surface ice temperatures within the ablation area, a warm bias in modeled basal ice temperatures at inland cold-bedded sites, and an apparent underestimation of deformational heating in high-strain settings. These biases provide process level insight on simulated ice temperatures

    Glacier detachments and rock-ice avalanches in the Petra Pervogo range, Tajikistan (1973-2019)

    No full text
    Glacier detachments are a rare, but hazardous, phenomenon of glacier instability, whereof only a handful have been documented to date. Common to all known cases is that many million cubic meters of ice detached from the bed of relatively low-Angle valley glaciers and turned into long-runout mass flows. Recently, two such detachments were observed in the Petra Pervogo range in Tajikistan. Using a variety of satellite imagery, including Landsat 1-8, Sentinel-2, ASTER, TanDEM-X, WorldView, and Keyhole, we characterized these events and identified in total 17 mass flows involving glacier ice (detachments, ice, and rock-ice avalanches; rock avalanches falling on glaciers) that clustered in four different catchments between 1973 and 2019. The runout distances range from 2 to 19 km, and the largest detached glacier volume was 8.8×106 m3. A total of 11 out of 13 detachments, ice, or rock-ice avalanches occurred between July and September in years with mean annual air temperatures above the trend of the past 46 years. The relatively large number of locally clustered events indicates that the Petra Pervogo range has particularly favorable conditions for glacier instabilities. The images and geology of the region suggest that easily erodible lithologies are widespread. These soft lithologies may be also one reason for the high density of surging glaciers in the Petra Pervogo range and the wider Pamir region. We conclude that high temperatures, combined with soft, fine-grained sediments, may increase the likelihood of mass wasting events and appear to be critical factors facilitating the detachment of entire valley glaciers, whereas such events appear to be relatively robust against earthquakes for our study area. The observed recurrence of mass wasting events make the Petra Pervogo range a potential candidate to witness glacier detachments by field studies.ISSN:1561-8633ISSN:1684-998

    3D dynamics of debris flows quantified at sub-second intervals from laser profiles

    Full text link
    We use pairs of parallel mounted laser profile scanners to measure main debris flow variables in two debris-flow channels in central and southern Switzerland. The scanners measure the instantaneous cross-sectional geometry of debris flows at rates of 25–100 Hz, and we apply large-scale particle image velocimetery to estimate velocity. The scanners also provide direct measurements of flow depth. From these data, we were able to estimate debris-flow depth, velocity and discharge for 16 out of 17 events. These results are consistent with discharge estimated from a system of geophones and a radar gauge for two available datasets. We also investigated debris-flow geometry to quantify rheology-controlled cross-flow convexity and found that four events manifest strong surface convexity at their surge fronts where we expect the largest boulders and low pore-fluid pressures. The scanners provide a completely new view of debris-flow dynamics and channel morphology and present novel opportunities to measure discharge and investigate debris-flow geometries

    Finding the Best TLS Point Cloud Registration Algorithm for Long-Range Geomonitoring

    No full text
    Accurate registration of TLS (Terrestrial Laser Scanner) point clouds is essential for unbiased determination of deformations in long-range geomonitoring. We evaluated the performance of several established registration methods in an ongoing geomonitoring case study. Our results showed that the ICP (Iterative Closest Point)-based methods specifically developed with geomonitoring in mind perform the best. However, when dealing with distortions in point clouds, the newly developed stripe-wise non-rigid transformation based on the F2S3 (feature to feature supervoxel-based spatial smoothing) algorithm outperformed all established methods

    Debris flow discharge hydrographs from Dorfbach & Spreitgraben, Switzerland, and Lattenbach, Austria

    No full text
    Discharge measurements are compiled for three monitored debris-flow channels in the European Alps. There are eleven debris-flow records from Dorfbach, Switzerland, between 2011 and 2014, and one event record from Spreitgraben, Switzerland, in 2014 (Jacquemart et al. 2017). There are records of nine debris flows at Lattenbach, Austria between 2007 and 2018 (Arai et al., 2013; HĂźbl & Kaitna, 2021). Three of the debris-flow records from Lattenbach were split in two to remove periods with extended low flow between high flow periods (low flow periods ranging from 410 s and 540 s). Discharges were calculated from simultaneous depth and velocity measurements. Depth measurements were obtained from flow surface measurements using laser scanners and/or radar measurements. Flow velocities were obtained from geophone measurements (Dorfbach & Spreitgraben) and Doppler radar data (Lattenbach).The compiled discharge over time data has been used as an input in numerical simulations of debris flows

    Characterization of large tsunamigenic landslides and their effects using digital surface models: A case study from Taan Fiord, Alaska

    No full text
    On 17 October 2015, a large landslide entered the marine waters of Taan Fiord, Alaska, and generated a displacement wave with a 193 m runup. The wave scoured the surrounding hillslopes of soil and vegetation and deposited significant volumes of material into the fjord, onto hillslopes on the opposite side of the fjord, and on top of Tyndall Glacier. For this study, we generated six, 2-m posting Digital Surface Models (DSMs) using DigitalGlobe/Maxar satellite imagery acquired near-annually between 2012 and 2019, and the Surface Extraction with TIN-based Search-space Minimization (SETSM) high-performance computing algorithm. We aligned the DSMs to exposed bedrock in the 01 March 2014 DSM acquisition, and then used them to characterize topographic and volumetric changes from before and after the 2015 Taan Fiord rock avalanche. We find that the landslide mobilized roughly 77. 0 Âą 0.9 Mm3 of material, of which approximately 56.3 Mm3 were deposited in the fjord waters. Furthermore, we quantified an additional 27.2 Âą 3.8 Mm3 of material scoured from fjord-adjacent hillslopes and deposited in the fjord waters, providing new constraints on the subaqueous deposition. This is the first time that DSMs have been used to estimate the volume of scour caused by a tsunami and the subsequent changes in extent and volume with time. Our results for the landslide and runout are consistent with field measurements published previously. This study offers improved estimates of both subaerial and subaqueous deposition for the 2015 Taan Fiord landslide and describes additional regional environmental conditions. We identify precursory motion prior to the 2015 landslide, characterize several smaller-scale landslides in the larger Taan Fiord region, delineate terminus positions and associated ice dynamics of the Tyndall Glacier, and detail seasonal changes in vegetation growth and snow melt/accumulation. This work provides important new insights into the geomorphic features and dynamics of this landslide and subsequent tsunami. The interdisciplinary applications associated with DSMs and the accuracy of the measurements presented here demonstrate that these methods are an effective tool to improve our understanding of the pre- and post-landslide processes, for monitoring areas at risk for landslides and other natural hazards, and for rapid response to catastrophic events.ISSN:0034-425

    Geomorphic and sedimentary signatures of catastrophic glacier detachments: A first assessment from Flat Creek, Alaska

    No full text
    Large-volume detachments of low-angle mountain glaciers involve the sudden mobilization of large amounts of glacier ice and lithic material in long-runout mass flows. Scientific investigations of these events have only recently brought to light their global occurrence and the similarities in the conditions under which they occur. While this recent research suggests that glacier detachments may become more frequent in a warming climate, a long-term record is largely lacking. Knowledge of the geomorphic signatures of glacier detachments could help establish such a record. Here, we present the first geomorphic and sedimentary assessment of a glacier detachment deposit. We investigate the landscape impacts of the Flat Creek glacier detachments in Alaska's St. Elias mountains through a combination of remote sensing analyses, field observations, Electrical Resistivity Tomography, and grain size and grain orientation analyses. From these data, we outline a land-system model that may help identify past glacier detachments elsewhere. Some of the most distinguishing features we documented were large bodies of buried ice-conglomerates, a rapid response of the remnant glacier ice, clusters of small-scale thermokarst ponds, countless molards, parallel striations etched into the hillslope and individual clasts, and a very long runout distance. We assess these features in terms of their longevity in the landscape and compare them to what has been described at glacier detachment sites elsewhere. Finally, we discuss to what extent glacier detachment deposits can be distinguished from deposits left by rock(−ice) avalanches, debris flows, and surging glaciers, and show that a differentiation is possible if detailed field investigations are undertaken.ISSN:0169-555xISSN:1872-695

    Variable hydrograph inputs for a numerical debris-flow runout model

    Get PDF
    Debris flows affect people and infrastructure around the world, and as a result, many numerical models and modelling approaches have been developed to simulate their impacts. Observations from instrumented debris-flow channels show that variability in inflow depth, velocity and discharge in real debris flows is much higher than what is typically used in numerical simulations. However, the effect of this natural variability on numerical model outputs is not well known. In this study, we examine the effects of using complex inflow time series within a single-phase runout model utilizing a Voellmy flow-resistance model. The interactions between model topography and flow-resistance were studied first using a simple triangular hydrograph, which showed simulated discharges change because of local slopes and Voellmy parameters. Next, more complex inflows were tested using time series based on 24 real debris-flow hydrographs initiated from three locations. We described a simple method to scale inflow hydrographs by defining a target event volume and maximum allowable peak discharge. The results showed a large variation in simulated flow depths and velocities arising from the variable inflow. The effects of variable inflow conditions were demonstrated in simulations of two case histories of real debris flows, where the variation in inflow leads to significant variations in the simulation outputs. The real debris-flow hydrographs were used to provide an indication of the range of impacts that may result from the natural variability in inflow conditions. These results demonstrate variation in inflow conditions can lead to reasonable estimates of the potential variation in impacts
    corecore