11,418 research outputs found

    Ethanol steam reforming over Pt/Al2O3 and Rh/Al2O3 catalysts: the effect of impurities on selectivity and catalyst deactivation

    Get PDF
    Bioethanol contains different types of organic impurities which can have a significant influence on the catalytic performance during steam reforming of bioethanol. Different C3 functional group impurities were added individually to the pure ethanol to investigate the influence of different functional groups on the ethanol steam reforming reaction over 0.2% Pt/Al2O3 and 0.2% Rh/Al2O3 catalysts at 773 K. It was established that the catalytic behaviour of both of the catalysts is significantly influenced by the different impurities. The addition of 1 mol% C3 alcohols (1-propanol and isopropyl alcohol) decreased the conversion of ethanol and increased the rate of catalyst deactivation. This deactivation of the catalyst in the presence of C3 alcohols was attributed to high olefin formation and incomplete decomposition of the C3 alcohols, which deposited over the catalysts as coke. Propanal, propylamine and acetone addition to the water/ethanol mixture resulted in rapid metal deactivation and a loss of steam reforming activity over the Pt/alumina although ethanol decomposition continued. In contrast the Rh/alumina did not lose all steam reforming activity when acetone and propylamine were added as impurities. On both the catalysts alcoholic impurities produced a large number of carbon nanotubes (CNTs)

    Transhydrogenation of propyne with butane over a vanadia/θ-alumina catalyst

    Get PDF
    The transhydrogenation of propyne and butane was studied over a 1 % VO x /alumina catalyst at 873 K. In the absence of the vanadia, the alumina support was active for cracking and alkylation. However, the addition of the vanadia reduced the propensity for both cracking and alkylation and added dehydrogenation activity. When propyne and butane were co-fed over the catalyst there was a synergistic effect resulting in an increased conversion of propyne (81 cf. 26 % when fed alone); however, much of this increased conversion was converted to carbon deposited on the catalyst. Transhydrogenation of propyne to propene was detected with an enhanced yield of propene when the propane/butane mix was passed over the catalyst. Taking a yield based on propyne fed then the yield of propene increased from 1.2 to 5.0 %. The conversion of butane to value-added products was also enhanced with all the butane converted accounted for in the production of 1-butene, trans-2-butene, iso-butane and iso-butene

    Comparison of C═C bond hydrogenation in C-4 unsaturated nitriles over Pt/alumina

    Get PDF
    The hydrogenation of allyl cyanide (but-1-ene-4-nitrile, AC), trans- and cis-crotononitrile (E- and Z-but-2-ene nitrile, TCN and CCN), and methacrylonitrile (2-cyano-1-propene, MCN) were studied, both singly and competitively, over a Pt/alumina catalyst in the liquid phase. Each unsaturated nitrile only underwent C═C bond hydrogenation: no evidence was found for the formation of the saturated or unsaturated amine. The nonconjugated allyl cyanide was found to be the most reactive unsaturated nitrile. Activation energies for the hydrogenation of the C═C bond in AC and MCN were determined giving values of 64 ± 7 kJ mol–1 for AC and 37 ± 4 kJ mol–1 for MCN. The reaction was zero order for both nitriles. Competitive hydrogenations revealed that not only does allyl cyanide react preferentially over the other isomers but also it inhibits the hydrogenation of the other isomers. When all four nitriles were simultaneously hydrogenated, inhibition effects were easily seen suggesting that in terms of strength of bonding to the surface an order of AC > CCN > TCN ∼ MN can be generated

    Organosolv pretreatment of Sitka spruce wood: conversion of hemicelluloses to ethyl glycosides

    Get PDF
    A range of organosolv pretreatments, using ethanol:water mixtures with dilute sulphuric acid, were applied to Sitka spruce sawdust with the aim of generating useful co-products as well as improving saccharification yield. The most efficient of the pretreatment conditions, resulting in subsequent saccharification yields of up to 86%, converted a large part of the hemicellulose sugars to their ethyl glycosides as identified by GC/MS. These conditions also reduced conversion of pentoses to furfural, the ethyl glycosides being more stable to dehydration than the parent pentoses. Through comparison with the behaviour of model compounds under the same reaction conditions it was shown that the anomeric composition of the products was consistent with a predominant transglycosylation reaction mechanism, rather than hydrolysis followed by glycosylation. The ethyl glycosides have potential as intermediates in the sustainable production of high-value chemicals

    Chip-firing groups of iterated cones

    Full text link
    Let Γ\Gamma be a finite graph and let Γn\Gamma_n be the "nnth cone over Γ\Gamma" (i.e., the join of Γ\Gamma and the complete graph KnK_n). We study the asymptotic structure of the chip-firing group Pic0(Γn)\text{Pic}^0(\Gamma_n).Comment: 8 pages. v4: added Remark 1.

    Isolation of high quality lignin as a by-product from ammonia percolation pretreatment of poplar wood

    Get PDF
    A two-step process combining percolation-mode ammonia pretreatment of poplar sawdust with mild organosolv purification of the extracted lignin produced high quality, high purity lignin in up to 31% yield and 50% recovery. The uncondensed fraction of the isolated lignin was up to 34%, close to that the native lignin (40%). Less lignin was recovered after pretreatment in batch mode, apparently due to condensation during the longer residence time of the solubilised lignin at elevated temperature. The lignin recovery was directly correlated with its molecular weight and its nitrogen content. Low nitrogen incorporation, observed at high ammonia concentration, may be explained by limited homolytic cleavage of -O-4 bonds. Ammonia concentrations from 15% to 25% (w/w) gave similar results in terms of lignin structure, yield and recovery

    Effect of excess iron on oxidative dehydrogenation of 1-butene over a series of zinc ferrite catalysts

    Get PDF
    The influence of excess Fe3+ in ZnFe2O4 for the catalytic oxidative dehydrogenation of 1-butene to 1, 3-butadiene was investigated to try to clarify inconsistencies in the existing literature. A series of nanoscale zinc ferrite powders were produced with increasing Fe: Zn ratios. The materials were characterized by a range of techniques, which showed the presence of α-Fe2O3 as a distinct phase with an increasing excess of Fe3+ and SEM highlighted the increased presence of surface structures on the ferrites at higher Fe: Zn ratios. Reaction testing showed α-Fe2O3to be virtually inactive for the oxidative dehydrogenation of 1-butene. Results for the ferrite catalysts showed a significant decrease in both conversion and yield with an increasing excess of Fe3+. Therefore an excess of Fe3+ has a negative effect on catalytic activity and selectivity of zinc ferrite for the oxidative dehydrogenation of 1-butene, but acts as a promoter for competing hydrogenation and combustion side reactions

    SOUTHERNMOST OCCURRENCE OF THE SUWANNEE COOTER, PSEUDEMYS CONCINNA SUWANNIENSIS (TESTUDINES: EMYDIDAE)

    Get PDF
    The Suwannee Cooter, Pseudemys concinna suwanniensis, the largest member of the speciose turtle family Emydidae, inhabits a small number of rivers that drain into the northeastern Gulf of Mexico along the northwest coast of Florida from just west of Tallahassee to just south of Tampa. The status of this state-protected subspecies in the southernmost of these rivers, the Alafia, is unknown and hence of conservation concern. We provide recent evidence confirming that a reproducing population still exists in this river, and review available specimens and both published and unpublished records documenting the southern limit of distribution. At least within the eastern United States, our observations also extend confirmed knowledge of the geographic occurrence of hatchling turtles overwintering in the nest southward by 285 km
    corecore