167 research outputs found
Properties of Flares-Generated Seismic Waves on the Sun
The solar seismic waves excited by solar flares (``sunquakes'') are observed
as circular expanding waves on the Sun's surface. The first sunquake was
observed for a flare of July 9, 1996, from the Solar and Heliospheric
Observatory (SOHO) space mission. However, when the new solar cycle started in
1997, the observations of solar flares from SOHO did not show the seismic
waves, similar to the 1996 event, even for large X-class flares during the
solar maximum in 2000-2002. The first evidence of the seismic flare signal in
this solar cycle was obtained for the 2003 ``Halloween'' events, through
acoustic ``egression power'' by Donea and Lindsey. After these several other
strong sunquakes have been observed. Here, I present a detailed analysis of the
basic properties of the helioseismic waves generated by three solar flares in
2003-2005. For two of these flares, X17 flare of October 28, 2003, and X1.2
flare of January 15, 2005, the helioseismology observations are compared with
simultaneous observations of flare X-ray fluxes measured from the RHESSI
satellite. These observations show a close association between the flare
seismic waves and the hard X-ray source, indicating that high-energy electrons
accelerated during the flare impulsive phase produced strong compression waves
in the photosphere, causing the sunquake. The results also reveal new physical
properties such as strong anisotropy of the seismic waves, the amplitude of
which varies significantly with the direction of propagation. The waves travel
through surrounding sunspot regions to large distances, up to 120 Mm, without
significant decay. These observations open new perspectives for helioseismic
diagnostics of flaring active regions on the Sun and for understanding the
mechanisms of the energy release and transport in solar flares.Comment: 12 pages, 4 figures, submitted to Ap
Highly ionized Fe X-ray lines at energies 7.7-8.6 keV
Fe XXV lines at 1.85 A (6.70 keV) and nearby Fe XXIV satellites have been
widely used for determining the temperature of the hottest parts of solar flare
and tokamak plasmas, though the spectral region is crowded and the lines are
blended during flare impulsive stages. The aim of this work is to show that
similarly excited Fe lines in the 7.7--8.6 keV (1.44--1.61 A) region have the
same diagnostic capability with the advantage of not being so crowded. Spectra
in the 7.7--8.6 keV range are synthesized using the CHIANTI spectral package
for conditions (temperature, turbulent velocities) appropriate to solar flares.
The calculated spectra show that the Fe lines in the 7.7--8.6 keV are well
separated even when turbulent velocities are present, and Fe XXIV/Fe XXV line
ratios should therefore provide valuable tools for diagnosing flares and
tokamak plasmas. It is concluded that Fe lines in the 7.7--8.6 keV range are
ideal for the measurement of flare temperature and for detecting the presence
of low-energy nonthermal electrons present at flare impulsive stages. An
indication of what type of instruments to observe this region is given.Comment: 6 pages, 7 figures. Accepted for publication in Astronomy and
Astrophysic
Energy Release During Slow Long Duration Flares Observed by RHESSI
Slow Long Duration Events (SLDEs) are flares characterized by long duration
of rising phase. In many such cases impulsive phase is weak with lack of
typical short-lasting pulses. Instead of that smooth, long-lasting Hard X-ray
(HXR) emission is observed. We analysed hard X-ray emission and morphology of
six selected SLDEs. In our analysis we utilized data from RHESSI and GOES
satellites. Physical parameters of HXR sources were obtained from imaging
spectroscopy and were used for the energy balance analysis. Characteristic time
of heating rate decrease, after reaching its maximum value, is very long, which
explains long rising phase of these flares.Comment: Accepted for publication in Solar Physic
Collective sensing and collective responses in quorum-sensing bacteria
Bacteria often face fluctuating environments, and in response many species have evolved complex decision-making mechanisms to match their behaviour to the prevailing conditions. Some environmental cues provide direct and reliable information (such as nutrient concentrations) and can be responded to individually. Other environmental parameters are harder to infer and require a collective mechanism of sensing. In addition, some environmental challenges are best faced by a group of cells rather than an individual. In this review, we discuss how bacteria sense and overcome environmental challenges as a group using collective mechanisms of sensing, known as ‘quorum sensing’ (QS). QS is characterized by the release and detection of small molecules, potentially allowing individuals to infer environmental parameters such as density and mass transfer. While a great deal of the molecular mechanisms of QS have been described, there is still controversy over its functional role. We discuss what QS senses and how, what it controls and why, and how social dilemmas shape its evolution. Finally, there is a growing focus on the use of QS inhibitors as antibacterial chemotherapy. We discuss the claim that such a strategy could overcome the evolution of resistance. By linking existing theoretical approaches to data, we hope this review will spur greater collaboration between experimental and theoretical researchers
But Not Both:The Exclusive Disjunction in Qualitative Comparative Analysis (QCA)
The application of Boolean logic using Qualitative Comparative Analysis (QCA) is becoming more frequent in political science but is still in its relative infancy. Boolean ‘AND’ and ‘OR’ are used to express and simplify combinations of necessary and sufficient conditions. This paper draws out a distinction overlooked by the QCA literature: the difference between inclusive- and exclusive-or (OR and XOR). It demonstrates that many scholars who have used the Boolean OR in fact mean XOR, discusses the implications of this confusion and explains the applications of XOR to QCA. Although XOR can be expressed in terms of OR and AND, explicit use of XOR has several advantages: it mirrors natural language closely, extends our understanding of equifinality and deals with mutually exclusive clusters of sufficiency conditions. XOR deserves explicit treatment within QCA because it emphasizes precisely the values that make QCA attractive to political scientists: contextualization, confounding variables, and multiple and conjunctural causation
Molecular basis of structure and function of the microvillus membrane of intestinal epithelial cells
Correlation of molecular structure with biochemical functions of the plasma membrane of the microvilli of intestinal epithelial cells has been investigated by biochemical and electron microscopic procedures. Repeating
particles, measuring approximately 60 Åin diameter, were found on the surface of the microvilli membrane which had been isolated or purified from rabbit intestinal epithelial cells and negatively stained with phosphotungstic acid. These particles were proved to be inherent components of the microvillus membrane, attached to the outer surface of its trilaminar structure, and were designated as the elementary particles of the microvilli
of intestinal epithelial cells. Biochemical and electron microscopic identification of these elementary particles has been carried out by isolation of the elementary particles with papain from the isolated microvillus membrane, followed by purification of the particles by chromatographies on DEAE-cellulose and Sephadex columns. The partially purified particles containing invertase and leucine aminopeptidase are similar in size and structure to those of the elementary particles in the microvillus membrane. Evidence indicates that each of the elementary particles coincide with or include an enzyme molecule such as disaccharidase or peptidase, which carry out the terminal hydrolytic digestion of carbohydrates and proteins, respectively, on the surface of the microvillus membrane. Magnesium ionactivated adenosine triphosphatase and alkaline phosphatase cannot be solubilized with papain but remains in the smooth-surface membrane after
the elementary particles have been removed. Cytochemical electron microscopic observation revealed that the active site of magnesium ion-activated adenosine triphosphatase is localized predominantly in the inner surface of the trilaminar structure of the microvillus membrane.</p
Tandem E2F Binding Sites in the Promoter of the p107 Cell Cycle Regulator Control p107 Expression and Its Cellular Functions
The retinoblastoma tumor suppressor (Rb) is a potent and ubiquitously expressed cell cycle regulator, but patients with a germline Rb mutation develop a very specific tumor spectrum. This surprising observation raises the possibility that mechanisms that compensate for loss of Rb function are present or activated in many cell types. In particular, p107, a protein related to Rb, has been shown to functionally overlap for loss of Rb in several cellular contexts. To investigate the mechanisms underlying this functional redundancy between Rb and p107 in vivo, we used gene targeting in embryonic stem cells to engineer point mutations in two consensus E2F binding sites in the endogenous p107 promoter. Analysis of normal and mutant cells by gene expression and chromatin immunoprecipitation assays showed that members of the Rb and E2F families directly bound these two sites. Furthermore, we found that these two E2F sites controlled both the repression of p107 in quiescent cells and also its activation in cycling cells, as well as in Rb mutant cells. Cell cycle assays further indicated that activation of p107 transcription during S phase through the two E2F binding sites was critical for controlled cell cycle progression, uncovering a specific role for p107 to slow proliferation in mammalian cells. Direct transcriptional repression of p107 by Rb and E2F family members provides a molecular mechanism for a critical negative feedback loop during cell cycle progression and tumorigenesis. These experiments also suggest novel therapeutic strategies to increase the p107 levels in tumor cells
Path segmentation for beginners: an overview of current methods for detecting changes in animal movement patterns
Increased availability of high-resolution movement data has led to the development of numerous methods for studying changes in animal movement behavior. Path segmentation methods provide basics for detecting movement changes and the behavioral mechanisms driving them. However, available path segmentation methods differ vastly with respect to underlying statistical assumptions and output produced. Consequently, it is currently difficult for researchers new to path segmentation to gain an overview of the different methods, and choose one that is appropriate for their data and research questions. Here, we provide an overview of different methods for segmenting movement paths according to potential changes in underlying behavior. To structure our overview, we outline three broad types of research questions that are commonly addressed through path segmentation: 1) the quantitative description of movement patterns, 2) the detection of significant change-points, and 3) the identification of underlying processes or ‘hidden states’. We discuss advantages and limitations of different approaches for addressing these research questions using path-level movement data, and present general guidelines for choosing methods based on data characteristics and questions. Our overview illustrates the large diversity of available path segmentation approaches, highlights the need for studies that compare the utility of different methods, and identifies opportunities for future developments in path-level data analysis. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40462-016-0086-5) contains supplementary material, which is available to authorized users
An Observational Overview of Solar Flares
We present an overview of solar flares and associated phenomena, drawing upon
a wide range of observational data primarily from the RHESSI era. Following an
introductory discussion and overview of the status of observational
capabilities, the article is split into topical sections which deal with
different areas of flare phenomena (footpoints and ribbons, coronal sources,
relationship to coronal mass ejections) and their interconnections. We also
discuss flare soft X-ray spectroscopy and the energetics of the process. The
emphasis is to describe the observations from multiple points of view, while
bearing in mind the models that link them to each other and to theory. The
present theoretical and observational understanding of solar flares is far from
complete, so we conclude with a brief discussion of models, and a list of
missing but important observations.Comment: This is an article for a monograph on the physics of solar flares,
inspired by RHESSI observations. The individual articles are to appear in
Space Science Reviews (2011
- …