27,781 research outputs found

    Improved I-V characteristics of SiC MOSFETs by TCE thermal gate oxidation

    Get PDF
    The effects of TCE (trichloroethylene) thermal gate oxidation on the electrical characteristics of SiC MOSFETs are investigated. It is found that TCE thermal gate oxidation can improve the I d-V d characteristics, increase the field-effect mobility, and reduce the threshold voltage and sub-threshold slope of the devices. The better device characteristics are believed to be attributed to the TCE-induced reductions of charges in the gate oxide and traps at the SiO/SiO 2 interface, and also to the gettering of charged impurities and reduction of physical defects by the chlorine incorporated in the gate oxide. ©2005 IEEE.published_or_final_versio

    Atypical RhoV and RhoU GTPases control development of the neural crest

    Get PDF
    This review addresses the developmental roles of two GTPases of the Rho family, RhoV/Chp and RhoU/Wrch. These two GTPases form a distinct subfamily related to Rac and Cdc42 proteins and were detected in a screen for Rho members that are particularly expressed in the neural crest, an embryonic tissue peculiar to vertebrates. The neural crest represents a physiological model of normal epithelial to mesenchymal transition (EMT), in which epithelial cells at the border of neural and non-neural ectoderm differentiate, lose their intercellular connections and migrate throughout the embryo. We showed that RhoV, transiently induced by the canonical Wnt pathway, is required for the full differentiation of neural crest cells, while RhoU, induced later by the non-canonical Wnt pathway, is necessary for the migration process. These two GTPases, which are highly conserved across vertebrates, are thus tightly functionally linked to Wnt signaling, whose implication in embryonic development and cancer progression is well established. In the light of the recent literature, we discuss how RhoV and RhoU may achieve their physiological functions

    Communities as Well Separated Subgraphs With Cohesive Cores: Identification of Core-Periphery Structures in Link Communities

    Full text link
    Communities in networks are commonly considered as highly cohesive subgraphs which are well separated from the rest of the network. However, cohesion and separation often cannot be maximized at the same time, which is why a compromise is sought by some methods. When a compromise is not suitable for the problem to be solved it might be advantageous to separate the two criteria. In this paper, we explore such an approach by defining communities as well separated subgraphs which can have one or more cohesive cores surrounded by peripheries. We apply this idea to link communities and present an algorithm for constructing hierarchical core-periphery structures in link communities and first test results.Comment: 12 pages, 2 figures, submitted version of a paper accepted for the 7th International Conference on Complex Networks and Their Applications, December 11-13, 2018, Cambridge, UK; revised version at http://141.20.126.227/~qm/papers

    Anomalous structure in the single particle spectrum of the fractional quantum Hall effect

    Get PDF
    The two-dimensional electron system (2DES) is a unique laboratory for the physics of interacting particles. Application of a large magnetic field produces massively degenerate quantum levels known as Landau levels. Within a Landau level the kinetic energy of the electrons is suppressed, and electron-electron interactions set the only energy scale. Coulomb interactions break the degeneracy of the Landau levels and can cause the electrons to order into complex ground states. In the high energy single particle spectrum of this system, we observe salient and unexpected structure that extends across a wide range of Landau level filling fractions. The structure appears only when the 2DES is cooled to very low temperature, indicating that it arises from delicate ground state correlations. We characterize this structure by its evolution with changing electron density and applied magnetic field. We present two possible models for understanding these observations. Some of the energies of the features agree qualitatively with what might be expected for composite Fermions, which have proven effective for interpreting other experiments in this regime. At the same time, a simple model with electrons localized on ordered lattice sites also generates structure similar to those observed in the experiment. Neither of these models alone is sufficient to explain the observations across the entire range of densities measured. The discovery of this unexpected prominent structure in the single particle spectrum of an otherwise thoroughly studied system suggests that there exist core features of the 2DES that have yet to be understood.Comment: 15 pages, 10 figure

    Identification of wheat-Dasypyrum breviaristatum addition lines with stripe rust resistance using C-banding and genomic in situ hybridization

    Get PDF
    Older adults show more bilateral prefrontal activation during cognitive performance than younger adults, who typically show unilateral activation. This over-recruitment has been interpreted as compensation for declining structure and function of the brain. Here we examined how the relationship between behavioral performance and prefrontal activation is modulated by different levels of working-memory load. Eighteen healthy older adults (70.8 +/- 5.0 years; MMSE 29.3 +/- 0.9) performed a spatial working-memory task (n-back). Oxygenated ([O2Hb]) and deoxygenated ([HHb]) hemoglobin concentration changes were registered by two functional Near-Infrared Spectroscopy (fNIRS) channels located over the left and right prefrontal cortex. Increased working-memory load resulted in worse performance compared to the control condition. [O2Hb] increased with rising working-memory load in both fNIRS channels. Based on the performance in the high working-memory load condition, the group was divided into low and high performers. A significant interaction effect of performance level and hemisphere on [O2Hb] increase was found, indicating that high performers were better able to keep the right prefrontal cortex engaged under high cognitive demand. Furthermore, in the low performers group, individuals with a larger decline in task performance from the control to the high working-memory load condition had a larger bilateral increase of [O2Hb]. The high performers did not show a correlation between performance decline and working-memory load related prefrontal activation changes. Thus, additional bilateral prefrontal activation in low performers did not necessarily result in better cognitive performance. Our study showed that bilateral prefrontal activation may not always be successfully compensatory. Individual behavioral performance should be taken into account to be able to distinguish successful and unsuccessful compensation or declined neural efficiency

    Exact exchange-correlation potential of a ionic Hubbard model with a free surface

    Full text link
    We use Lanczos exact diagonalization to compute the exact exchange-correlation (xc) potential of a Hubbard chain with large binding energy ("the bulk") followed by a chain with zero binding energy ("the vacuum"). Several results of density functional theory in the continuum (sometimes controversial) are verified in the lattice. In particular we show explicitly that the fundamental gap is given by the gap in the Kohn-Sham spectrum plus a contribution due to the jump of the xc-potential when a particle is added. The presence of a staggered potential and a nearest-neighbor interaction V allows to simulate a ionic solid. We show that in the ionic regime in the small hopping amplitude limit the xc-contribution to the gap equals V, while in the Mott regime it is determined by the Hubbard U interaction. In addition we show that correlations generates a new potential barrier at the surface
    corecore