327 research outputs found

    The impact of stress on financial decision-making varies as a function of depression and anxiety symptoms.

    Get PDF
    Stress can precipitate the onset of mood and anxiety disorders. This may occur, at least in part, via a modulatory effect of stress on decision-making. Some individuals are, however, more resilient to the effects of stress than others. The mechanisms underlying such vulnerability differences are nevertheless unknown. In this study we attempted to begin quantifying individual differences in vulnerability by exploring the effect of experimentally induced stress on decision-making. The threat of unpredictable shock was used to induce stress in healthy volunteers (N = 47) using a within-subjects, within-session design, and its impact on a financial decision-making task (the Iowa Gambling Task) was assessed alongside anxious and depressive symptomatology. As expected, participants learned to select advantageous decks and avoid disadvantageous decks. Importantly, we found that stress provoked a pattern of harm-avoidant behaviour (decreased selection of disadvantageous decks) in individuals with low levels of trait anxiety. By contrast, individuals with high trait anxiety demonstrated the opposite pattern: stress-induced risk-seeking (increased selection of disadvantageous decks). These contrasting influences of stress depending on mood and anxiety symptoms might provide insight into vulnerability to common mental illness. In particular, we speculate that those who adopt a more harm-avoidant strategy may be better able to regulate their exposure to further environmental stress, reducing their susceptibility to mood and anxiety disorders

    Cognitive impairment in depression and its (non-)response to antidepressant treatment

    Get PDF
    ABSTRACT FROM: Shilyansky C, Williams LM, Gyurak A, et al. Effect of antidepressant treatment on cognitive impairments associated with depression: a randomised longitudinal study. Lancet Psychiatry 2016;3:425–35

    Computational Psychiatry: towards a mathematically informed understanding of mental illness

    Get PDF
    Computational Psychiatry aims to describe the relationship between the brain's neurobiology, its environment and mental symptoms in computational terms. In so doing, it may improve psychiatric classification and the diagnosis and treatment of mental illness. It can unite many levels of description in a mechanistic and rigorous fashion, while avoiding biological reductionism and artificial categorisation. We describe how computational models of cognition can infer the current state of the environment and weigh up future actions, and how these models provide new perspectives on two example disorders, depression and schizophrenia. Reinforcement learning describes how the brain can choose and value courses of actions according to their long-term future value. Some depressive symptoms may result from aberrant valuations, which could arise from prior beliefs about the loss of agency ('helplessness'), or from an inability to inhibit the mental exploration of aversive events. Predictive coding explains how the brain might perform Bayesian inference about the state of its environment by combining sensory data with prior beliefs, each weighted according to their certainty (or precision). Several cortical abnormalities in schizophrenia might reduce precision at higher levels of the inferential hierarchy, biasing inference towards sensory data and away from prior beliefs. We discuss whether striatal hyperdopaminergia might have an adaptive function in this context, and also how reinforcement learning and incentive salience models may shed light on the disorder. Finally, we review some of Computational Psychiatry's applications to neurological disorders, such as Parkinson's disease, and some pitfalls to avoid when applying its methods

    Threat of Shock and Aversive Inhibition: Induced Anxiety Modulates Pavlovian-Instrumental Interactions

    Get PDF
    Anxiety can be an adaptive response to potentially threatening situations. However, if experienced in inappropriate contexts, it can also lead to pathological and maladaptive anxiety disorders. Experimentally, anxiety can be induced in healthy individuals using the threat of shock (ToS) paradigm. Accumulating work with this paradigm suggests that anxiety promotes harm-avoidant mechanisms through enhanced inhibitory control. However, the specific cognitive mechanisms underlying anxiety-linked inhibitory control are unclear. Critically, behavioral inhibition can arise from at least 2 interacting valuation systems: instrumental (a goal-directed system) and Pavlovian (a "hardwired" reflexive system). The present study (N = 62) replicated a study showing improved response inhibition under ToS in healthy participants, and additionally examined the impact of ToS on aversive and appetitive Pavlovian-instrumental interactions in a reinforced go/no-go task. When Pavlovian and instrumental systems were in conflict, ToS increased inhibition to aversive events, while leaving appetitive interactions unperturbed. We argue that anxiety promotes avoidant behavior in potentially harmful situations by potentiating aversive Pavlovian reactions (i.e., promoting avoidance in the face of threats). Critically, such a mechanism would drive adaptive harm-avoidant behavior in threatening situations where Pavlovian and instrumental processes are aligned, but at the same time, result in maladaptive behaviors when misaligned and where instrumental control would be advantageous. This has important implications for our understanding of the mechanisms that underlie pathological anxiety. (PsycINFO Database Recor

    Anxiety promotes memory for mood-congruent faces but does not alter loss aversion

    Get PDF
    Pathological anxiety is associated with disrupted cognitive processing, including working memory and decision-making. In healthy individuals, experimentally-induced state anxiety or high trait anxiety often results in the deployment of adaptive harm-avoidant behaviours. However, how these processes affect cognition is largely unknown. To investigate this question, we implemented a translational within-subjects anxiety induction, threat of shock, in healthy participants reporting a wide range of trait anxiety scores. Participants completed a gambling task, embedded within an emotional working memory task, with some blocks under unpredictable threat and others safe from shock. Relative to the safe condition, threat of shock improved recall of threat-congruent (fearful) face location, especially in highly trait anxious participants. This suggests that threat boosts working memory for mood-congruent stimuli in vulnerable individuals, mirroring memory biases in clinical anxiety. By contrast, Bayesian analysis indicated that gambling decisions were better explained by models that did not include threat or treat anxiety, suggesting that: (i) higher-level executive functions are robust to these anxiety manipulations; and (ii) decreased risk-taking may be specific to pathological anxiety. These findings provide insight into the complex interactions between trait anxiety, acute state anxiety and cognition, and may help understand the cognitive mechanisms underlying adaptive anxiety

    Non-invasive direct current brain stimulation: the evidence behind the hype

    Get PDF
    The leading global cause of disability is major depression, affecting over 350 million people worldwide. Pharmacological and psychological therapies for depression have changed very little in the past thirty years, despite extensive research for new treatment targets. The most common antidepressant drugs are effective for about 58% of depressed patients in primary care, while 45% respond to placebo. The difficulty in developing new treatments arises in part because depression is a disorder of unknown aetiology. The neurobiological correlates of depression, on the other hand, are not entirely unknown: neuroscience research has identified several brain circuits that operate abnormally in depression. Recently, this knowledge has contributed to the development of experimental treatments, including those that stimulate the brain directly in a targeted manner. Among these novel treatments is a form of painless, noninvasive brain stimulation termed transcranial direct current stimulation (tDCS), commonly applied to the dorsolateral prefrontal cortex (DLPFC) in trials for depression. The practical advantages of tDCS are many: tDCS is comparatively inexpensive, portable, and safe. In this article we discuss the evidence that tDCS is effective in depression, and the neural and cognitive mechanisms that may drive its putative antidepressant effect. We also outline the importance of mechanistic studies of DLPFC tDCS to clarify its effects on the brain, and optimize its potential for clinical use

    Neural and behavioral correlates of aberrant salience in individuals at risk for psychosis

    Get PDF
    Correction to the original article published in Schizophrenia Bulletin, Volume 39, Issue 6, 1 November 2013, Pages 1328–1336; https://doi.org/10.1093/schbul/sbs147
    • …
    corecore