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Abstract 34 

Evidence for endemically low statistical power has recently cast neuroscience findings 35 

into doubt. If low statistical power plagues neuroscience, this reduces confidence in 36 

reported effects. However, if statistical power is not uniformly low, such blanket mistrust 37 

might not be warranted. Here, we provide a different perspective on this issue, analysing 38 

data from an influential paper reporting a median power of 21% across 49 meta-39 

analyses (Button et al., 2013). We demonstrate, using Gaussian mixture modelling, that 40 

the sample of 730 studies included in that analysis comprises several subcomponents; 41 

therefore the use of a single summary statistic is insufficient to characterise the nature of 42 

the distribution. We find that statistical power is extremely low for studies included in 43 

meta-analyses that reported a null result; and that it varies substantially across subfields 44 

of neuroscience, with particularly low power in candidate gene association studies. 45 

Thus, while power in neuroscience remains a critical issue, the notion that studies are 46 

systematically underpowered is not the full story: low power is far from a universal 47 

problem.  48 

 49 
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Significance statement 56 

Recently, researchers across the biomedical and psychological sciences have become 57 

concerned with the reliability of results. One marker for reliability is statistical power: the 58 

probability of finding a statistically significant result, given that the effect exists. Previous 59 

evidence suggests that statistical power is low across the field of neuroscience. Our 60 

results present a more comprehensive picture of statistical power in neuroscience: on 61 

average, studies are indeed underpowered—some very seriously so—but many studies 62 

show acceptable or even exemplary statistical power. We show that this heterogeneity in 63 

statistical power is common across most subfields in neuroscience (psychology, 64 

neuroimaging, etc.). This new, more nuanced picture of statistical power in neuroscience 65 

could affect not only scientific understanding, but potentially policy and funding decisions 66 

for neuroscience research. 67 

 68 

 69 
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Introduction 77 

Trust in empirical findings is of vital importance to scientific advancement, but publishing 78 

biases and questionable research practices can cause unreliable results (Nosek et al., 79 

2012; Button et al., 2013). In recent years, scientists and funders across the biomedical 80 

and psychological sciences have become concerned with what has been termed a crisis 81 

of replication and reliability (Barch and Yarkoni, 2013). 82 

One putative marker for the reliability of results is statistical power: the probability that a 83 

statistically significant result will be declared, given that the null hypothesis is false (i.e., 84 

a real effect exists). It can be shown that, in the context of field-wide underpowered 85 

studies, a smaller proportion of significant findings will reflect true positives than if power 86 

is universally high (Ioannidis, 2005). A recent influential paper by Button and colleagues 87 

(Button et al., 2013) calculated statistical power across all meta-analyses published in 88 

2011 that were labelled as “neuroscience” by Thomson Reuters Web of Science. It 89 

concluded that neuroscience studies were systematically underpowered, with a median 90 

statistical power of 21%, and that the proportion of statistically significant results that 91 

reflect true positives is therefore likely to be low. The prevalence of very low power has 92 

serious implications for the field. If the majority of studies are indeed underpowered, 93 

statistically significant findings are untrustworthy, and scientific inference will often be 94 

misinformed. This analysis provoked considerable debate in the field about whether 95 

neuroscience does indeed suffer from endemic low statistical power (Bacchetti, 2013; 96 

Quinlan, 2013). We sought to add nuance to this debate by re-analysing the original 97 

dataset using a more fine-grained approach, and provide a different perspective on 98 

statistical power in neuroscience. 99 

We extended the analyses of Button and colleagues (Button et al., 2013), using data 100 

from all 730 individual studies, which provided initial results that were consistent with the 101 
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original report (which used only the median-sized study in 49 meta-analyses). To 102 

quantify the heterogeneity of the dataset we made use of Gaussian mixture modelling 103 

(GMM) (Corduneanu and Bishop, 2001), which assumes that the data may be described 104 

as being composed of multiple Gaussian components. We then used model comparison 105 

to find the most parsimonious model for the data. We also categorised each study based 106 

on its methodology to examine whether low power is common to all fields of 107 

neuroscience.  108 

We find strong evidence that the distribution of power across studies is multi-modal, with 109 

the most parsimonious model tested including four components. Moreover, we show that 110 

candidate gene association studies and studies from meta-analyses with null results 111 

make up the majority of extremely low powered studies in the analysis of Button and 112 

colleagues. Although median power in neuroscience is low, the distribution of power is 113 

heterogeneous, and there are clusters of adequately and even well-powered studies in 114 

the field. Thus, our in-depth analysis reveals that the crisis of power is not uniform: 115 

instead, statistical power is extremely diverse across neuroscience. 116 

Methods 117 

Experimental design and analysis 118 

Re-analysing ‘power failures’ 119 

Our initial analysis took a similar approach to that of Button and colleagues, but contrary 120 

to their protocol (which reported power only for the median-sized study in each meta-121 

analysis: N=49), we report power for each of the 730 individual studies (see Figure 3a 122 

and Table 1). As in the original analysis, we defined power as the probability that a given 123 

study would declare a significant result, assuming that the population effect size was 124 

equal to the weighted mean effect size derived from the corresponding meta-analysis 125 
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(note that this differs from ‘post-hoc’ power, in which the effect size would be assumed to 126 

be equal to the reported effect size from each individual study (O’Keefe, 2007)).  127 

For experiments with a binary outcome, power was calculated by assuming that the 128 

expected incidence or response rate for the control group (i.e. the base rate) was equal 129 

to that reported in the corresponding meta-analysis and, similarly, used an assumed 130 

“treatment effect” (odds or risk ratio) equal to that given by each meta-analysis. The test 131 

statistic used for the calculation was the log odds-ratio divided by its standard error. The 132 

latter was derived from a first order approximation, and estimated by the square root of 133 

the sum of the reciprocals of the expected values of the counts in the 2-by-2 summary 134 

table. The test statistic itself was then referenced to the standard normal distribution for 135 

the purposes of the power calculation. For studies reporting Cohen’s d, the assumed 136 

treatment effect was again taken directly from the corresponding meta-analysis, and all 137 

power calculations were based on the standard noncentral t-distribution. For 138 

comparability with the original study we calculated the median power across all 730 139 

individual studies which was equal to 23%, close to the 21% reported by Button and 140 

colleagues (2013). 141 

Figure 1 shows an overview of our analytical process. We additionally classified each 142 

study according to methodology: candidate gene association studies (N=234); 143 

psychology (N=198); neuroimaging (N=65); treatment trials (N=145); neurochemistry 144 

(N=50); and a miscellaneous category (N=38 studies from N=2 meta-analyses). Two 145 

independent raters categorized the 49 meta-analyses into these six subfields, with 47/49 146 

classified consistently; the remaining two were resolved following discussion. Before 147 

continuing our analysis in more depth, we present the reader with results that are directly 148 

comparable with the analysis of Button and colleagues (with the addition of the 149 

subfields; Table 2). These results are intended for comparison with our more nuanced 150 

characterisation of the distributions using GMMs presented below; given the results of 151 
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those GMMs (which suggest the these distributions are multi-modal and therefore not 152 

well characterised by a single measure of central tendency) they should not be used to 153 

draw strong inferences. 154 

 155 

Figure 1. Classification of studies for analysis  156 

Description of study methodology. GMM=Gaussian mixture model.  157 

 158 
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Table 1. Characteristics and classification of included meta-analyses  183 

Classification performed by two independent raters. k: number of studies; † indicates relative risk; CI: 184 
confidence interval; * indicates p<0.05.  185 

First author of study k Cohen’s d Odds ratio CI Significance Classification  
Babbage (Babbage et al., 2011)  13 -1.11  -0.97 to -1.25 * Psychology 
Bai (Bai, 2011)  18  1.47 1.22 to 1.77 * Genetic 
Bjorkhelm-Bergman (Björkhem-
Bergman et al 2011)

6 -1.20  1.6 to 8.0  * Treatment 
Bucossi (Bucossi et al., 2011)  21 .41  .17 to .65 * Neurochemistry 
Chamberlain (Chamberlain et 
al 2011)

11 -.51  .825 to 1.08 * Psychology 
Chang (Chang et al., 2011a) 56 -.19  -.29 to -.1  * Psychology 
Chang (Chang et al., 2011b) 6  .98 .86 to 1.12 - Genetic  
Chen (Chen et al., 2011)  12  .6 .52 to .69 * Miscellaneous 
Chung (Chung and Chua, 2011)  11  .67 .43 to 1.04 - Treatment 
Domellof (Domellöf et al., 2011) 14  2.12 1.59 to 2.78 * Psychology 
Etminan (Etminan et al., 2011)  14  0.8 .7 to .92 * Treatment 
Feng (Feng et al., 2011)  4  1.20 1.04 to 1.4 * Genetic 
Green (Green et al., 2011)  17 -.59  -.93 to -.257 * Neurochemistry 
Han (Han et al., 2011)  14  1.35 1.06 to 1.72 * Genetic 
Hannestad (Hannestad et al., 
2011)

13 -.13  -.55 to .29 - Treatment 
Hua (Hua et al., 2011)  27  1.13 1.05 to 1.21 * Genetic 
Lindson (Lindson and Aveyard, 
2011)

8  1.05 .92 to 1.19 - Treatment 
Liu (Liu et al., 2011a)  12  1.04 .88 to 1.22 - Genetic 
Liu (Liu et al., 2011b)  6  .89 .82 to .96 * Genetic 
MacKillop (MacKillop et al., 
2011)

57 .58  .509 to .641 * Psychology 
Maneeton (Maneeton et al., 
2011)

5  1.67† 1.23 to 2.26 * Treatment 
Ohi (Ohi et al., 2011)  6  1.12 1.00 to 1.26 * Genetic 
Olabi (Olabi et al., 2011)  14 -.4  -.62 to -.19 * Brain imaging 
Oldershaw (Oldershaw et al., 
2011)

10 -.51  -.73 to -.28 * Psychology 
Oliver (Oliver et al., 2011)  7  .86 0.79 to .95 * Treatment 
Peerbooms (Peerbooms et al., 
2011)

36  1.26 1.09 to 1.46 * Genetic 
Pizzagalli (Pizzagalli, 2011)  22 .92  .442 to 1.393 * Treatment 
Rist (Rist et al., 2011)  5  2.06 1.33 to 3.19 * Miscellaneous 
Sexton (Sexton et al., 2011)  8 .43  .063 to .799 * Brain imaging 
Shum (Shum et al., 2011)  11 .89  .75 to 1.02 * Psychology 
Sim (Sim et al., 2011)  2  1.23† 1.08 to 1.52 * Treatment 
Song (Song et al., 2011)  12 .15  .043 to .264 * Neurochemistry 
Sun (Sun et al., 2011)  6  1.93 1.55 to 2.41 * Genetic 
Tian (Tian et al., 2011)  4 1.26  .947 to 1.568 * Treatment 
Trzesniak (Trzesniak et al., 
2011)

11  1.98 1.33 to 2.94 * Brain imaging 
Veehof (Veehof et al., 2011)  8 .37  .20 to .53 * Treatment 
Vergouwen (Vergouwen et al., 
2011)

24  .83 .74 to .93 * Treatment 
Vieta (Vieta et al., 2011)  10  .68† .60 to .77 * Treatment 
Wisdom (Wisdom et al., 2011)  53 -.14  -.21 to -.07 * Genetic 
Witteman (Witteman et al., 
2011)

26 -1.41  -1.76 to -1.05 * Psychology 
Woon (Woon and Hedges, 
2011)

24 -.60  -.83 to -.37 * Brain imaging 
Xuan (Xuan et al., 2011)  20  1.00 .861 to 1.156 - Genetic 
Yang (cohort) (Yang et al., 
2011a)

14  1.38† 1.18 to 1.61 * Miscellaneous 
Yang (case control) (Yang et al., 
2011a)

7  2.48 1.93 to 3.19  * Miscellaneous 
Yang (Yang et al., 2011b) 3  0.67  .43 to .92 * Treatment 
Yuan (Yuan et al., 2011)  14  4.98 3.97 to 6.23 * Genetic 
Zafar (Zafar et al., 2011)  8  1.07 † .91 to 1.27 - Treatment 
Zhang (Zhang et al., 2011)  12  1.27 1.01 to 1.59 * Genetic 
Zhu (Zhu et al., 2011)  8 0.84  .18 to 1.49 * Brain imaging 
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Group of studies Median 
power 
(%) 

Min. 
power 
(%) 

Max. 
power 
(%) 

2.5th and 97.5th 
percentile (based 
on raw data) 

95% HDI (based on 
GMMs) 

Total k 

All studies  23 0.05 1 [0.05 to 1.00] [0.00 to 0.72],       
[0.8 to 1.00] 

730 

All studies excluding 
null 

30 0.05 1 [0.05 to 1.00] [0.01 to 0.73],     
[0.79 to 1.00] 

638 

Genetic  11 0.05 1 [0.05 to 0.94]  [0.00 to 0.44],    
[0.63 to 0.93] 

234 

Treatment  20 0.05 1 [0.05 to 1.00] [0.00 to 0.65],    
[0.91 to 1.00] 
 

145 

Psychology  50 0.07 1 [0.07 to 1.00] [0.02 to 0.24],    
[0.28 to 1.00] 

198 

Imaging  32 0.11 1 [0.11 to 1.00] [0.03 to 0.54],    
[0.71 to 1.00] 

65 

Neurochemistry  47 0.07 1 [0.07 to 1.00] [0.02 to 0.79],    
[0.92 to 1.00] 

50 

Miscellaneous  57 0.11 1 [0.11 to 1.00] [0.09 to 1.00] 38 

Table 2. Median power by study type 186 

Median, maximum, and minimum power subdivided by study type. We also provide the 2.5th and 187 
97.5th percentile of the frequency distribution of power estimates of individual studies for the raw data 188 
and 95% highest-density intervals (95% HDI) for the GMMs. We used highest density intervals (HDI) 189 
to summarise the intervals of the most probable values from the distribution. HDIs differ from CIs in 190 
that they represent the most probable values of the distribution rather than symmetric credible 191 
intervals in a central tendency. As a result, HDIs are more suitable for summarising skewed and 192 
multimodal distributions than CIs. HDIs were computed using the HDRCDE R toolbox, which finds the 193 
shortest intervals such that these intervals encompass the 95% most probable values of the 194 
distribution. Multiple intervals may be identified if a region between modes of the distribution is 195 
unrepresentative of the distribution (i.e. below the 5% threshold) (Wand et al., 1991; Hyndman, 1996; 196 
Samworth and Wand, 2010), which occurs for multimodal data. 197 

 198 

One or many populations? 199 

The common measures of central tendency (mean, median, and mode) may not 200 

always characterise populations accurately, because distributions can be complex, 201 

and made up of multiple ‘hidden’ subpopulations. Consider the distribution of height 202 

in the United States: the mean is 168.8±13.04 cm (Fryar et al., 2012). This statistic is 203 

rarely reported because the distribution comprises two distinct populations: male 204 

(175.9 ±15.03 cm) and female (162.1 cm ±10.8 cm). The mean of the male 205 
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population is greater than the 95th percentile of the female population. Thus, a single 206 

measure of central tendency fails to describe this distribution adequately.  207 

In an analogous fashion, the original paper of Button and colleagues reported a 208 

median of 21% power, which could be interpreted as implying a degree of statistical 209 

homogeneity across neuroscience. The use of the median as a summary statistic, 210 

while having the straightforward interpretation of ‘half above and half below’, also 211 

implies that the power statistics are drawn from a distribution with a single central 212 

tendency. As we show below, this assumption is contradicted by our analyses, which 213 

makes the median statistic difficult to interpret. It should be noted that Button and 214 

colleagues themselves described their results as demonstrating a ‘clear bimodal 215 

distribution’. Therefore we next explored the possibility that the power data originated 216 

from a combination of multiple distributions, using GMM. 217 

GMM (similar to latent class analysis and factor models (Lubke and Muthén, 2005)) 218 

can be used to represent complex density functions where the central limit theorem 219 

does not apply, such as in the case of bimodal or multi-modal distributions. We fit 220 

GMMs with varying numbers of ‘K’ unknown components to the data and performed 221 

model selection using the Bayesian Information Criteria (BIC) scores to compare 222 

models with different fit and complexity (the higher the number of ‘K’ unknown 223 

components the more complex the model). This allowed us to take a data-driven 224 

approach, as opposed to direct mixture models using a set number of components: 225 

thus, we were agnostic as to the number of components that emerged from the 226 

model. The GMM with the lowest BIC identifies the most parsimonious model, 227 

trading model fit against model complexity. A difference in BIC between models of 10 228 

or above on a natural logarithm scale is indicative of strong evidence in support of 229 

the model with the lower score (Kass and Raftery, 1995). To ensure that we used the 230 
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most suitable GMM for this dataset, we ran different GMM models: standard GMMs, 231 

regularized GMMs, and Dirichlet Process GMMs (see below for full methods, and 232 

Figure 2 for model comparison, and model selection). The results were similar using 233 

each of these techniques (see Figure 2). 234 

Finite Gaussian mixture model 235 

For a finite GMM, the corresponding likelihood function is given by (Corduneanu and 236 

Bishop, 2001): 237 

 

where πi denotes the mixing coefficient (proportions of the i–th component), 238 

  denotes the conditional probability of the observation xn given by a 239 

Gaussian distribution with parameters θi and D denotes the whole dataset of 240 

observations, xn. Generally speaking, this means that we believe that there is an 241 

underlying generative structure to the observed data, and that a mixture of Gaussian 242 

components would a reasonable description/approximation of the true generative 243 

process of this data. That is, we assume that the data D has been generated from a 244 

mixture of Gaussians distributions with varying means, variances, and weights 245 

(model parameters), which we want to uncover. To do so, we perform model 246 

inversion and find the point estimates of the model parameters that maximize the 247 

likelihood (see eq. 1 above) of the observed data (maximum likelihood estimation). 248 

 249 

Model inversion is performed using the iterative EM (expectation-maximisation) 250 

algorithm, which finds a local maximum of the likelihood function given initial starting 251 

parameters. We performed 50 restarts with kmeans++ initialization (Arthur and 252 
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Vassilvitskii, 2007). Multiple restarts were performed in order to find the global 253 

maximum of the likelihood (i.e., the best GMM for the data; that is, the parameters 254 

that maximize the chance of observing the data), as opposed to a local maximum. 255 

This allowed us to ensure that convergence was achieved for all GMMs, on all 256 

datasets. 257 

Traditionally, finite mixture modelling approaches require the number of components 258 

to be specified in advance of analysing the data. That is, for each finite Gaussian 259 

mixture model fitted to the data, one is required to input the number of components K 260 

present in the mixture (model inversion only estimates the parameters for each 261 

component). Finding the number of components present in the data is a model 262 

selection problem, and requires fitting multiple GMMs with varying numbers of 263 

components to the data, then comparing the model evidence for each fit, and 264 

selecting the most parsimonious model for the data in question (Bishop, 2006; 265 

Gershman and Blei, 2012; Murphy, 2012).  266 

It is worth noting, however, that GMMs can be subject to instabilities, such as 267 

singularities of the likelihood function. Specifically, it is possible for one component to 268 

‘collapse’ all of its variance onto a single data point, leading to an infinite likelihood 269 

(Bishop, 2006; Murphy, 2012) and to incorrect parameter estimation for the model. 270 

Multiple techniques have been developed in order to address this problem. The 271 

simplest and most commonly used technique is to introduce a regularization 272 

parameter. Another is to adopt a fully Bayesian approach and apply soft constraints 273 

on the possible range of likely parameter values, therefore preventing problematic 274 

and unrealistic parameter values. Both methodologies were used in this study, and 275 

we report on the resulting analysis for both implementations in the model selection 276 

section (below).  277 
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Finite Gaussian mixture model with regularization 278 

In typical finite mixture models, a regularization parameter can be added in order to 279 

avoid likelihood singularities. To do so, a very small value is added to the diagonal of 280 

the covariance matrix, enforcing positive-definite covariance and preventing infinitely 281 

small precision parameters for individual components. This model specification 282 

enables one to address the issue of ‘collapsing’ components but also enforces 283 

simpler explanations of the data, favouring models with fewer components. The 284 

larger the regularization parameter, the simpler the models will be, as single 285 

components will tend to encompass a larger subspace of the data partition. In this 286 

study we introduced a regularization parameter of 0.001, which represents a 287 

reasonable trade-off between preventing over-fitting components to noise in the 288 

dataset, while capturing the most salient features from the data (the separate peaks); 289 

therefore providing a better generative model of the data than using non-regularized 290 

GMMs. We used this approach for our primary inferences.   291 

Dirichlet Process Gaussian mixture model (DPGMM) 292 

Dirichlet Process (DP) Gaussian mixture models (DPGMMs) are a class of Bayesian 293 

non-parametric methods that avoid the issue of model selection when identifying the 294 

optimal number of components in a mixture model (Gershman and Blei, 2012; 295 

Murphy, 2012). With DPGMM, we expand the original GMM model to incorporate a 296 

prior over the mixing distribution, and a prior over the component parameters (mean 297 

and variance of components). Common choices for DPGMM priors are conjugate 298 

priors such as the normal-inverse-Wishart distribution over the mean and covariance 299 

matrix of components, and a non-parametric prior over mixing proportions based on 300 

the DP.  301 
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The DP, often referred to as the Chinese restaurant process or the stick-breaking 302 

process, is a distribution over infinite partitions of integers (Gershman and Blei, 303 

2012; Murphy, 2012). As a result, the DPGMM theoretically allows for an infinite 304 

number of components as it lets the number of components grow as the amount of 305 

data increases. The DP assigns each observation to a cluster with a probability that 306 

is proportional to the number of observations already assigned to that cluster. That 307 

is, the process will tend to cluster data points together, dependent on the population 308 

of the existing cluster and a concentration parameter . The smaller the  309 

parameter, the more likely it is that an observation will be assigned to an existing 310 

cluster with probability proportional to the number of elements already assigned to 311 

this cluster. This phenomenon is often referred to as the ‘rich get richer’. This 312 

hyperparameter  indirectly controls how many clusters one expects to see from the 313 

data (another approach is to treat  as unknown, using a gamma hyperprior over , 314 

and letting the Bayesian machinery infer the value (Blei and Jordan, 2006)).  315 

Implementation and analysis for the non-regularized finite GMMs, regularized finite 316 

GMMs, and DPGMMs was performed using Matlab R2015b (Mathworks Inc.), using 317 

the Statistics and Machine Learning toolbox, the Lightspeed toolbox and the vdpgm 318 

toolbox (Kurihara et al., 2007). 319 

Model selection 320 

The traditional mixture modelling approach requires the number of clusters or 321 

components to be specified in advance of analysing the data. However, in many 322 

settings, including here, one does not know the number of underlying components 323 

and would like to estimate this directly from the data. One approach typically used 324 

with finite mixture models is to fit the data with varying number of components and 325 
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then to select the model that provides the best trade-off between model fit (how well 326 

the model explains the data) and model complexity (how many component 327 

parameters are used in the model). A metric commonly used in this setting is the 328 

Bayesian Information Criterion (BIC), which allows one to compute an approximation 329 

to the Bayes factor (relative evidence) for a model. The BIC typically has two terms, 330 

the likelihood (how well the model fits the data) and a complexity term that penalizes 331 

more complex models with more free parameters (e.g. the number of components). 332 

The model with the lowest BIC metric is usually preferred as it provides the most 333 

parsimonious and generalizable model of the data. 334 

For each one of the following datasets model fits were performed using non-335 

regularized and regularized finite mixtures with up to 15 components (up to 10 336 

components for the subfield categories – Figure 2): the original dataset; the original 337 

dataset excluding null studies; each methodological subfield within the original 338 

dataset (Genetics, Psychology, Neurochemistry, Treatment, Imaging, and 339 

Miscellaneous studies); and the original dataset excluding each methodological 340 

subfield. Model selection was then performed using the BIC in order to select the 341 

most parsimonious model for each dataset. Figure 2 presents (for each dataset) the 342 

corresponding BIC metric for increasing levels of model complexity. Plain blue lines 343 

denote the BIC metric using non-regularized GMMs, while plain red lines denote the 344 

BIC using regularized GMMs. The BIC metric curve for non-regularized GMMs (blue 345 

line) exhibits wide jumps (Figure 2), while the function should remain relatively 346 

smooth as seen with regularized-GMMs (red line). This suggests that non-347 

regularized GMMs results were prone to overfitting and were inadequate for some of 348 

our datasets.  349 
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Finally, we compared different modelling methodologies, in order to select and report 350 

the most robust findings in terms of the estimation of the number of components. We 351 

compared non-regularized GMMs, regularized GMMs and DPGMMs on the same 352 

datasets (Figure 2), and found that regularized GMMs provided the most 353 

conservative estimation of the number of components. We therefore opted to report 354 

these results as the main findings.  355 

 356 

 357 

Figure 2. Model comparison and model selection analysis for Gaussian mixture models 358 
(GMM), regularized GMMs and Dirichlet process GMMs (DPGMMs). The blue and red lines 359 
display Bayesian Information Criterion (BIC) scores (natural log scale) for non-regularized GMMs and 360 
regularized GMMs, respectively, for different levels of model complexity (number of mixture 361 
components). The lowest BIC score indicates the model that provides the best compromise between 362 
model fit (likelihood) and model complexity for the given dataset. Winning models for GMMs (purple 363 
dotted-dash vertical line), regularized GMMs (yellow dashed vertical line), and DPGMMs (green 364 
dotted vertical line) are clearly present for each dataset, enabling direct comparison of the output for 365 
each methodology. The regularized GMM approach provided the most parsimonious interpretation of 366 
the data on the two main datasets: all studies (a), excluding null studies (b) as well as 5 out of 6 367 
subfield datasets – (c) to (h). 368 

Results 369 

We analysed the original sample of 730 powers (see histogram in Figure 3a). If the 370 

median were the most appropriate metric to describe the distribution of powers across 371 

studies, we would expect the GMM to produce a solution containing only a single 372 

component. Instead, the most parsimonious GMM solution included four components, 373 

with strong evidence in favour of this model versus either of the next best models (i.e. 374 

GMMs with 3 or 5 components - see Figure 2). Importantly, this model revealed that the 375 

overall distribution of power appears to be composed of sub-groups of lower and higher 376 

powered studies (overlay in Figure 3a). We next explored possible sources of this 377 
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variability, considering the influence of both null effects and specific subfields of 378 

neuroscience.  379 

 380 

 381 

 382 

 383 

Figure 3. Power of studies  384 

Figure 3a-b: Histograms depicting the distribution of study powers across all 730 studies (a) 385 
and across studies excluding null meta-analyses (b). However, we note that excluding power 386 
statistics from studies included in null meta-analyses may provide an overestimation of power, 387 
because in many instances there remains uncertainty as to whether or not a true effect exists. Pale 388 
overlay: results of the regularised Gaussian mixture model (GMM), identifying four components (C1, 389 
C2, C3, C4) and their relative weights within the dataset. Below the histogram, pie charts depict 390 
methodological subfields, as well as null meta-analyses, contributing to each component. The null 391 
studies (white pie-chart sections) comprise 52 genetic studies and 40 treatment studies. The dark 392 
blue line shows the sum of the components (overall GMM prediction). c-h: histograms depicting the 393 
distribution of study powers across all meta-analyses, separated by subfield: candidate gene 394 
association studies (c); psychology studies (d); neurochemistry studies (e); treatment studies (f); 395 
imaging studies (g); miscellaneous studies (h). Pale overlays show the results of the regularised GMM 396 
for each subfield; the dark lines show the sum of the components (overall GMM prediction). 397 

 398 

When is an effect not an effect? 399 

The first important source of variability we considered relates to the concept of power 400 

itself. The calculation of power depends not just on the precision of the experiment 401 

(heavily influenced by the sample size), but also on the true population effect size. 402 

Logically, power analysis requires that an effect (the difference between population 403 

distributions) actually exists. Conducting a power analysis when no effect exists violates 404 

this predicate, and will therefore yield an uninterpretable result. Indeed, when no effect 405 

exists the power statistic becomes independent of the sample size and is simply equal to 406 

the Type I error rate; which by definition is the probability of declaring a significant result 407 

under the null hypothesis.  408 

To illustrate this point, consider the meta-analysis titled ‘No association between APOE 409 

epsilon 4 allele and multiple sclerosis susceptibility’ (Xuan et al., 2011), which included a 410 
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total of 5,472 cases and 4,727 controls. The median effect size (odds ratio) reported was 411 

precisely 1.00, with a 95% confidence interval from 0.861-1.156. Button and colleagues 412 

calculated the median power to be 5%, which is equal to the Type I error rate. However, 413 

as is evident from the paper’s title, this meta-analysis was clearly interpreted by its 414 

authors as indicating a null effect, which is consistent with the observed result. Indeed, 415 

in this case the power is 5% for both the largest (N>3000) and the smallest (N<150) 416 

study in the meta-analysis. In such cases the estimate of 5% power is not easily 417 

interpretable. 418 

On the other hand, it is problematic to assume that a non-significant meta-analytic 419 

finding can be taken as evidence there is no true effect; in the Frequentist statistical 420 

framework, failure to reject the null hypothesis cannot be interpreted as unambiguous 421 

evidence that no effect exists (due to the potential for false negative results). For 422 

example, reference 16 (‘Effects on prolongation of Bazett’s corrected QT interval of 423 

seven second-generation antipsychotics in the treatment of schizophrenia: a meta-424 

analysis’) reported a median effect size (odds ratio) of 0.67, with a 95% confidence 425 

interval from 0.43-1.04. While this result was non-significant, the point estimate of the 426 

effect size is greater than those from several meta-analyses that did achieve statistical 427 

significance, and in our view it would be premature to conclude that this effect does not 428 

exist.  429 

These examples illustrate the difficulty in deciding whether conducting a power analysis 430 

is appropriate. Even tiny effect sizes could hypothetically still exist: in any biological 431 

system the probability that an effect is precisely null is itself zero – therefore all effects 432 

“exist” by this definition (with certain exceptions, e.g. in the context of randomization), 433 

even if to detect them we might need to test more individuals than are currently alive. 434 

However, the notion of “falsely rejecting the null hypothesis” then loses its meaning 435 

(Jacob Cohen, 1994). One approach would be to assume that an effect does not exist 436 
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until the observed evidence suggests that the null hypothesis can be rejected, consistent 437 

with the logical basis of classical statistical inference. This would avoid any potential bias 438 

towards very low power estimates due to non-existent effects. On the other hand, this 439 

approach raises the potential problem of excluding effects that are genuinely very small, 440 

which may cause a bias in the other direction. Within the constraints of the null 441 

hypothesis significance testing framework, it is impossible to be confident that an effect 442 

does not exist at all. Therefore, we cannot simply assume an effect does not exist after 443 

failing to reject the null hypothesis, since a small effect could go undetected.  444 

Motivated by this logic, we initially included studies from ‘null meta-analyses’ (i.e. where 445 

the estimated effect size from the meta-analysis was not significantly different from the 446 

null at the conventional alpha=0.05) in our GMMs (Figure 3a). However, we note that 447 

excluding power statistics from studies included in null meta-analyses may provide an 448 

overestimation of power, because in many instances there remains uncertainty as to 449 

whether or not a true effect exists. Nonetheless, with the above caveats in mind, we also 450 

wished to assess the degree to which null meta-analyses may have impacted the 451 

results. Null results occurred in 7 of the 49 meta-analyses (92 of the 730 individual 452 

studies), contributing a substantial proportion of the extremely low powered studies 453 

(<10% power; Figure 3a, white pie chart segment of C1). When we restricted our 454 

analysis only to studies within meta-analyses that reported statistically significant results 455 

(‘non-null’ meta-analyses), the median study power (unsurprisingly) increased, but only 456 

slightly, to 30%, and the nature of the resulting GMM distribution did not change 457 

substantially (see Figure 3b). Thus, excluding null meta-analyses does not provide a 458 

radically different picture. Therefore, we also examined another potential contributor to 459 

power variability in neuroscience: the influence of specific subfields of neuroscience.  460 

Power in neuroscience subfields 461 
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As described above, we categorised each meta-analysis into one of six methodological 462 

subfields. Interestingly, statistical power varied significantly according to subfield 463 

(permutation test of equivalence: p<0.001), with genetic association studies lower (11% 464 

median power) than any other subfield examined (all Mann-Whitney U tests p<0.001). 465 

This is consistent with the original report by Button and colleagues, which reported the 466 

median power of animal studies (18% and 31% for two meta-analyses) and structural 467 

brain imaging studies (8% across 41 meta-analyses). However, even within specific 468 

subfields, the distribution of power is multimodal (see Figure 3c-h). This could represent 469 

variability in statistical practices across studies, but another possible explanation is that 470 

the size of the effect being studied varies substantially between meta-analyses, even 471 

within the same subfield. This alternative explanation may, at least in part, account for 472 

the variability between (and within) subfields of neuroscience.  473 

The large number of extremely low powered candidate gene association studies 474 

warrants additional comment. These were included in the original analysis because the 475 

Web of Science classifies such studies as “neuroscience” if the phenotypes in question 476 

are neurological or psychiatric disorders. However, modern genome-wide association 477 

studies have revealed that the overwhelming majority of candidate gene association 478 

studies have been underpowered, because the reliable associations that have been 479 

identified are extremely small (Flint and Munafò, 2013); thus, very low power is expected 480 

within this subgroup, which our analysis confirms (see Figure 3c). This subgroup of 481 

studies can offer important lessons to the rest of neuroscience: without large genetic 482 

consortia, the field of neuropsychiatric genetics might still be labouring under the 483 

misapprehension that individual common variants make substantial contributions to the 484 

risk for developing disorders. Providing that sampling and measurement are 485 

standardised, pooling data across multiple sites has the potential to improve dramatically 486 

not only statistical power, but also the precision on estimates of effect size. 487 
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Since numerous studies report that candidate gene association studies are severely 488 

underpowered (Klerk et al., 2002; Colhoun et al., 2003; Duncan and Keller, 2011), and 489 

given that candidate gene association studies comprised over one-third of our total 490 

sample of studies, we suspected that they might contribute heavily to the lowest-power 491 

peak in our distribution. We confirmed this: in the absence of genetic studies, many 492 

studies remained underpowered, but the distribution contained proportionally fewer 493 

studies in the lowest-power peak (around 10% power) (Figure 4a). Although low power 494 

is clearly not limited to candidate gene association studies, they nonetheless seem to 495 

have a greater influence on the overall power distribution than any other subfield, 496 

skewing the distribution towards the lowest-power peak (Figure 4b-f). 497 

 498 

Figure 4. Gaussian Mixture Models (GMMs) excluding each subfield.  499 

GMMs for the whole population of studies excluding genetic studies (a), excluding psychology studies 500 
(b), excluding neurochemistry studies (c), excluding treatment studies (d), excluding imaging studies 501 
(e), and excluding the remaining miscellaneous studies (f). Compare with the distribution including all 502 
studies (Figure 3a). 503 

 504 

Estimations of effect size 505 

An important factor contributing to the estimation of power is whether the effect size was 506 

estimated accurately a priori. If researchers initially overestimated the effect size, even 507 

the sample size specified by a power calculation would be insufficient to detect a real, 508 

but smaller effect. Interestingly, our analysis also shows the existence of very high 509 

powered studies within neuroscience, in which far more subjects have been included 510 

than would technically be warranted by a power analysis. In this case, an a priori 511 

underestimate of effect size could yield a very high powered study, if an effect proves to 512 

be larger than initially expected (which has occasionally been reported (Open Science 513 

Collaboration, 2015)). Another important consideration is that an over-estimation of 514 
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effect size might occur due to publication bias, which will skew effect size estimates from 515 

meta-analyses upwards, resulting in an optimistic power estimate. This is an important 516 

caveat to the results we report here: a bias toward publishing significant results means 517 

that the power estimates we report will represent upper bounds on the true power 518 

statistics. Unfortunately, we could not adequately address this potential confound 519 

directly, since tests of publication bias themselves have very low power, particularly if 520 

the number of studies in a meta-analysis is low. However, publication bias has long 521 

been reported in psychology (Francis, 2012) and neuroscience (Sena et al., 2010), so it 522 

is reasonable to assume that it has inflated estimates of statistical power in these 523 

analyses. 524 

Simulating power in hypothetical fields 525 

One clear conclusion of our analyses is that the interplay between the proportion of true 526 

effects and the power to detect those effects is crucial in determining the power 527 

distribution of a field. We simulated four power graphs for hypothetical fields to illustrate 528 

this point: one with low power (~50%), but where all effects exist (Figure 5a); one with 529 

high power (~90%), where all effects exist (Figure 5b); one with low power (~50%), 530 

where only a minority (25%) of effects exist (Figure 5c); and high power (~90%), but 531 

where only a minority (25%) of effects exist (Figure 5d). We found that the ‘low power’ 532 

field did not resemble the distribution of power in neuroscience we observed (Figure 3a). 533 

Instead, our findings were closest to a mixture of two distributions: Figure 5c, with low 534 

(~50%) power, and where only 25% of findings are true effects; and Figure 5d, with high 535 

(~90%) power, but where only 25% of findings are true effects. This would be consistent 536 

with the notion that the absence of true effects may contribute to the distribution of 537 

statistical power in neuroscience. 538 

Figure 5. Simulated power distributions for four hypothetical fields. (a) ‘Easy field’ with low 539 
power (~0.5) and all effects exist; (b) ‘Easy field’ with high power (~0.9) and all effects exist; (c) ‘Hard 540 
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field’ with low power (~0.5) (for those effects that exist), but where effects exist in only 25% of cases; 541 
(d) ‘Hard field’ with high power (~0.9) (for those effects that exist), but where effects exist in only exist 542 
in 25% of cases. Power distributions were simulated by generating 50,000 samples with fixed sample-543 
size (N=45) while varying effect-size. For each panel, the effect-size was sampled from a truncated 544 
(effect-size>0) Gaussian distribution with mean 0.3 (a & c) or 0.49 (b & d), so as to represent low or 545 
high power respectively. For the ‘hard’ fields (c & d), 75% of the effect-size sample was generated 546 
from a half-Gaussian distribution with mean=0. SD was set to 0.07 for all effect size distributions. 547 
Similar results can be obtained by fixing the effect size and varying the sample size.   548 

Discussion 549 

Implications for neuroscience 550 

We argue that a very influential analysis (cited over 1500 times at the time of writing) 551 

does not adequately describe the full variety of statistical power in neuroscience. Our 552 

analyses show that the dataset is insufficiently characterized by a single distribution. 553 

Instead, power varies considerably, including between subfields of neuroscience, and is 554 

particularly low for candidate gene association studies. Conducting power analyses for 555 

null effects may also contribute to low estimates in some cases, though determining 556 

when this has occurred is challenging. Importantly, however, power is far from adequate 557 

in every subfield.  558 

Our analyses do not negate the importance of the original work in highlighting poor 559 

statistical practice in the field, but they do reveal a more nuanced picture. In such a 560 

diverse field as neuroscience, it is not surprising that statistical practices differ. While 561 

Button and colleagues were careful to point out that they identified a range of powers in 562 

neuroscience, their reporting of a median result could be interpreted as implying that the 563 

results were drawn from a single distribution, which our analyses suggest is not the 564 

case. We confirm that low power is clearly present in many studies, and agree that 565 

focusing on power is a critical step in improving the replicability and reliability of findings 566 

in neuroscience. However, we also argue that low statistical power in neuroscience is 567 

neither consistent nor universal.  568 
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Ethical issues accompany both under- and over-powered studies. Animal sacrifices, 569 

drugs taken to human trials, and government funding are all wasted if power is too low. 570 

However, blindly increasing sample size across the board, simply to satisfy concerns 571 

about field-wide power failures, is also not the best use of resources. Instead, each 572 

study design needs to be considered on its own merits. In this vein, one response to the 573 

original article pointed out that any measure of a study’s projected value suffers from 574 

diminishing marginal returns: every additional animal or human participant adds less 575 

statistical value than the previous one (Bacchetti et al., 2005, 2008; 2013).  576 

Studies with extremely large sample sizes can also fall prey to statistically significant 577 

findings for trivial effects that are unlikely to be either theoretically or clinical important 578 

(Lenth, 2001; Ioannidis, 2005; Friston, 2012; Quinlan, 2013). In other words, the 579 

assessment of power is determined by what we consider to be an interesting (i.e. 580 

nontrivial) effect size (Cohen, 1988). This dependency means that power considerations 581 

are meaningless in the absence of assumptions about how large effect sizes need to be 582 

in order to be considered theoretically or clinically important; and this may vary 583 

dramatically across different fields. This is particularly relevant in fields where multiple 584 

comparisons are performed routinely, such as genetics and neuroimaging (Friston, 585 

2012). Conversely, smaller studies can only detect large effect sizes, and may suffer 586 

from imprecise estimates of effect size and interpretive difficulties. Crucially, there is no 587 

single study design that will optimise power for every genetic locus or brain area. In fact, 588 

power estimates for individual studies are themselves extremely noisy and may say little 589 

about the actual power in any given study. However, a move away from presenting only 590 

p-values and towards reporting point estimates and confidence intervals (as long 591 

advocated by statisticians), and towards sharing data to improve such estimates, would 592 

allow researchers to make better informed decisions about whether an effect is likely to 593 

be clinically or theoretically useful. 594 



Power-up  Nord et al.  
 

25 
 

 595 

 596 

Conclusion 597 

We have demonstrated the great diversity of statistical power in neuroscience. Do our 598 

findings lessen concerns about statistical power in neuroscience? Unfortunately not. In 599 

fact, the finding that the distribution of power is highly heterogeneous demonstrates an 600 

undesirable inconsistency, both within and between methodological subfields. Yet within 601 

this variability are several appropriately, and even very high powered studies. Therefore, 602 

we should not tar all studies with the same brush, but instead encourage investigators to 603 

engage in the best research practices, including preregistration of study protocols 604 

(ensuring the study will have sufficient power), routine publication of null results, and 605 

avoiding practices such as p-hacking that lead to biases in the published literature.  606 

 607 
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