16 research outputs found

    The variation of G in a negatively curved space-time

    Full text link
    Scalar-tensor (ST) gravity theories provide an appropriate theoretical framework for the variation of Newton's fundamental constant, conveyed by the dynamics of a scalar-field non-minimally coupled to the space-time geometry. The experimental scrutiny of scalar-tensor gravity theories has led to a detailed analysis of their post-newtonian features, and is encapsulated into the so-called parametrised post-newtonian formalism (PPN). Of course this approach can only be applied whenever there is a newtonian limit, and the latter is related to the GR solution that is generalized by a given ST solution under consideration. This procedure thus assumes two hypothesis: On the one hand, that there should be a weak field limit of the GR solution; On the other hand that the latter corresponds to the limit case of given ST solution. In the present work we consider a ST solution with negative spatial curvature. It generalizes a general relativistic solution known as being of a degenerate class (A) for its unusual properties. In particular, the GR solution does not exhibit the usual weak field limit in the region where the gravitational field is static. The absence of a weak field limit for the hyperbolic GR solution means that such limit is also absent for comparison with the ST solution, and thus one cannot barely apply the PPN formalism. We therefore analyse the properties of the hyperbolic ST solution, and discuss the question o defining a generalised newtonian limit both for the GR solution and for the purpose of contrasting it with the ST solution. This contributes a basic framework to build up a parametrised pseudo-newtonian formalism adequate to test ST negatively curved space-times.Comment: 7 pages, 5 figures. Contribution to the Joint European and National Astronomy Meeting (JENAM) 2010; based on a talk given by JPM in the "From Varying Couplings to Fundamental Physics" Symposiu

    Cosmology with the Laser Interferometer Space Antenna

    Get PDF
    The Laser Interferometer Space Antenna (LISA) has two scientific objectives of cosmological focus: to probe the expansion rate of the universe, and to understand stochastic gravitational-wave backgrounds and their implications for early universe and particle physics, from the MeV to the Planck scale. However, the range of potential cosmological applications of gravitational wave observations extends well beyond these two objectives. This publication presents a summary of the state of the art in LISA cosmology, theory and methods, and identifies new opportunities to use gravitational wave observations by LISA to probe the universe

    Modified Gravity and Cosmology: An Update by the CANTATA Network

    No full text
    General Relativity and the 螞CDM framework are currently the standard lore and constitute the concordance paradigm. Nevertheless, long-standing open theoretical issues, as well as possible new observational ones arising from the explosive development of cosmology the last two decades, offer the motivation and lead a large amount of research to be devoted in constructing various extensions and modifications. All extended theories and scenarios are first examined under the light of theoretical consistency, and then are applied to various geometrical backgrounds, such as the cosmological and the spherical symmetric ones. Their predictions at both the background and perturbation levels, and concerning cosmology at early, intermediate and late times, are then confronted with the huge amount of observational data that astrophysics and cosmology are able to offer recently. Theories, scenarios and models that successfully and efficiently pass the above steps are classified as viable and are candidates for the description of Nature. We list the recent developments in the fields of gravity and cosmology, presenting the state of the art, high-lighting the open problems, and outlining the directions of future research. Its realization is performed in the framework of the COST European Action "Cosmology and Astrophysics Network for Theoretical Advances and Training Actions"
    corecore