197 research outputs found

    The Presence of the Iron-Sulfur Motif Is Important for the Conformational Stability of the Antiviral Protein, Viperin

    Get PDF
    Viperin, an antiviral protein, has been shown to contain a CX3CX2C motif, which is conserved in the radical S-adenosyl-methionine (SAM) enzyme family. A triple mutant which replaces these three cysteines with alanines has been shown to have severe deficiency in antiviral activity. Since the crystal structure of Viperin is not available, we have used a combination of computational methods including multi-template homology modeling and molecular dynamics simulation to develop a low-resolution predicted structure. The results show that Viperin is an α -β protein containing iron-sulfur cluster at the center pocket. The calculations suggest that the removal of iron-sulfur cluster would lead to collapse of the protein tertiary structure. To verify these predictions, we have prepared, expressed and purified four mutant proteins. In three mutants individual cysteine residues were replaced by alanine residues while in the fourth all the cysteines were replaced by alanines. Conformational analyses using circular dichroism and steady state fluorescence spectroscopy indicate that the mutant proteins are partially unfolded, conformationally unstable and aggregation prone. The lack of conformational stability of the mutant proteins may have direct relevance to the absence of their antiviral activity

    Proinsulin Atypical Maturation and Disposal Induces Extensive Defects in Mouse Ins2+/Akita β-Cells

    Get PDF
    Because of its low relative folding rate and plentiful manufacture in β-cells, proinsulin maintains a homeostatic balance of natively and plentiful non-natively folded states (i.e., proinsulin homeostasis, PIHO) through the integration of maturation and disposal processes. PIHO is susceptible to genetic and environmental influences, and its disorder has been critically linked to defects in β-cells in diabetes. To explore this hypothesis, we performed polymerase chain reaction (PCR), metabolic-labeling, immunoblotting, and histological studies to clarify what defects result from primary disorder of PIHO in model Ins2+/Akita β-cells. We used T antigen-transformed Ins2+/Akita and control Ins2+/+ β-cells established from Akita and wild-type littermate mice. In Ins2+/Akita β-cells, we found no apparent defect at the transcriptional and translational levels to contribute to reduced cellular content of insulin and its precursor and secreted insulin. Glucose response remained normal in proinsulin biosynthesis but was impaired for insulin secretion. The size and number of mature insulin granules were reduced, but the size/number of endoplasmic reticulum, Golgi, mitochondrion, and lysosome organelles and vacuoles were expanded/increased. Moreover, cell death increased, and severe oxidative stress, which manifested as increased reactive oxygen species, thioredoxin-interacting protein, and protein tyrosine nitration, occurred in Ins2+/Akita β-cells and/or islets. These data show the first clear evidence that primary PIHO imbalance induces severe oxidative stress and impairs glucose-stimulated insulin release and β-cell survival as well as producing other toxic consequences. The defects disclosed/clarified in model Ins2+/Akita β-cells further support a role of the genetic and stress-susceptible PIHO disorder in β-cell failure and diabetes

    Functional Characterization of Aquaporin-4 Specific T Cells: Towards a Model for Neuromyelitis Optica

    Get PDF
    Antibodies to the water channel protein aquaporin-4 (AQP4), which is expressed in astrocytic endfeet at the blood brain barrier, have been identified in the serum of Neuromyelitis optica (NMO) patients and are believed to induce damage to astrocytes. However, AQP4 specific T helper cell responses that are required for the generation of anti-AQP4 antibodies and most likely also for the formation of intraparenchymal CNS lesions have not been characterized. specific T cells were present in the natural T cell repertoire of wild type C57BL/6 mice and T cell lines were raised. However, active immunization with these AQP4 peptides did not induce signs of spinal cord disease. Rather, sensitization with AQP4 peptides resulted in production of IFN-γ, but also IL-5 and IL-10 by antigen-specific T cells. Consistent with this cytokine profile, the AQP4 specific antibody response upon immunization with full length AQP4 included IgG1 and IgG2, which are associated with a mixed Th2/Th1 T cell response. restricted AQP4 specific T cell epitopes will allow us to investigate how AQP4 specific autoimmune reactions are regulated and to establish faithful mouse models of NMO that include both cellular and humoral responses against AQP4

    Big Losses Lead to Irrational Decision-Making in Gambling Situations: Relationship between Deliberation and Impulsivity

    Get PDF
    In gambling situations, we found a paradoxical reinforcing effect of high-risk decision-making after repeated big monetary losses. The computerized version of the Iowa Gambling Task (Bechara et al., 2000), which contained six big loss cards in deck B', was conducted on normal healthy college students. The results indicated that the total number of selections from deck A' and deck B' decreased across trials. However, there was no decrease in selections from deck B'. Detailed analysis of the card selections revealed that some people persisted in selecting from the “risky” deck B' as the number of big losses increased. This tendency was prominent in self-rated deliberative people. However, they were implicitly impulsive, as revealed by the matching familiar figure test. These results suggest that the gap between explicit deliberation and implicit impulsivity drew them into pathological gambling

    Treatment of neuromyelitis optica: state-of-the-art and emerging therapies.

    Get PDF
    Neuromyelitis optica (NMO) is an autoimmune disease of the CNS that is characterized by inflammatory demyelinating lesions in the spinal cord and optic nerve, potentially leading to paralysis and blindness. NMO can usually be distinguished from multiple sclerosis (MS) on the basis of seropositivity for IgG antibodies against the astrocytic water channel aquaporin-4 (AQP4). Differentiation from MS is crucial, because some MS treatments can exacerbate NMO. NMO pathogenesis involves AQP4-IgG antibody binding to astrocytic AQP4, which causes complement-dependent cytotoxicity and secondary inflammation with granulocyte and macrophage infiltration, blood-brain barrier disruption and oligodendrocyte injury. Current NMO treatments include general immunosuppressive agents, B-cell depletion, and plasma exchange. Therapeutic strategies targeting complement proteins, the IL-6 receptor, neutrophils, eosinophils and CD19--all initially developed for other indications--are under clinical evaluation for repurposing for NMO. Therapies in the preclinical phase include AQP4-blocking antibodies and AQP4-IgG enzymatic inactivation. Additional, albeit currently theoretical, treatment options include reduction of AQP4 expression, disruption of AQP4 orthogonal arrays, enhancement of complement inhibitor expression, restoration of the blood-brain barrier, and induction of immune tolerance. Despite the many therapeutic options in NMO, no controlled clinical trials in patients with this condition have been conducted to date

    Aquaporin water channels in the nervous system.

    Get PDF
    The aquaporins (AQPs) are plasma membrane water-transporting proteins. AQP4 is the principal member of this protein family in the CNS, where it is expressed in astrocytes and is involved in water movement, cell migration and neuroexcitation. AQP1 is expressed in the choroid plexus, where it facilitates cerebrospinal fluid secretion, and in dorsal root ganglion neurons, where it tunes pain perception. The AQPs are potential drug targets for several neurological conditions. Astrocytoma cells strongly express AQP4, which may facilitate their infiltration into the brain, and the neuroinflammatory disease neuromyelitis optica is caused by AQP4-specific autoantibodies that produce complement-mediated astrocytic damage
    corecore