8 research outputs found

    Vertical Vibration Response of Footbridges with Fundamental Natural Frequency up to 10 Hz under Dynamic Loading by Single Pedestrian

    Get PDF
    This is the final version. Available on open access from ASCE via the DOI in this recordData Availability Statement: Some or all data, models, or code that support the findings of this study as well as simulation results (Matlab) used in sections “Sensitivity analysis” and “Design spectrum” are available from the corresponding author upon reasonable request.A design spectrum of characteristic acceleration response to pedestrian-induced dynamic loading has been developed for footbridge structures. The novelty of the proposed spectrum over the existing spectra is that: (1) it is underpinned by a recently developed comprehensive statistical model of pedestrian dynamic loading; (2) it is applicable to a broader natural frequency range of structures up to 10 Hz; and (3) it accounts for uncertainties in both dynamic loading and structure dynamics that are typically encountered in structural design. In addition, the importance of correct modeling of pedestrian's walking speed and narrow-band nature of the force signal has been demonstrated. Comparison with the design spectra recommended in contemporary design codes reveals that the existing approaches are not being applicable for structures with natural frequency in the range of third, fourth, and fifth harmonic of the dynamic force. In addition, they could both underestimate and overestimate the structural response for lower-frequency structures. The proposed design spectrum is a design tool applicable to structures whose mode shape can be approximated by half-sine, span length between 12.5 and 100 m, and damping ratio between 0.25% and 2%.Spanish Ministry of Economy and Competitiveness (MINECO

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Early damage detection of roller bearings using wavelet packet decomposition, ensemble empirical mode decomposition and support vector machine

    No full text
    Roller bearings are widely used in rotating machinery and one of the major reasons for machine breakdown is their failure. Vibration based condition monitoring is the most common method for extracting some important information to identify bearing defects. However, acquired acceleration signals are usually noisy, which significantly affects the results of fault diagnosis. Wavelet packet decomposition (WPD) is a powerful method utilized effectively for the denoising of the signals acquired. Furthermore, Ensemble empirical mode decomposition (EEMD) is a newly developed decomposition method to solve the mode mixing problem of empirical mode decomposi- tion (EMD), which is a consequence of signal intermittence. In this study a combined automatic method is proposed to detect very small defects on roller bearings. WPD is applied to clean the noisy signals acquired, then informative feature vectors are extracted using the EEMD technique. Finally, the states of the bearings are examined by labeling the samples using the hyperplane constructed by the support vector machine algorithm. The data were generated by means of a test rig assembled in the labs of the Dynamics and Identification Research Group in the mechanical and aerospace engineering depart- ment, Politecnico di Torino. Various operating condi- tions (three shaft speeds, three external loads and a very small damage size on a roller) were considered to obtain reliable results. It is shown that the combined method proposed is able to identify the states of the bearings effectively

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition).

    No full text
    corecore