36 research outputs found

    Gillespie syndrome in a South Asian child:a case report with confirmation of a heterozygous mutation of the ITPR1 gene and review of the clinical and molecular features

    Get PDF
    Abstract Background Gillespie syndrome is a rare, congenital, neurological disorder characterized by the association of partial bilateral aniridia, non-progressive cerebellar ataxia and intellectual disability. Homozygous and heterozygous pathogenic variants of the ITPR1 gene encoding an inositol 1, 4, 5- triphosphate- responsive calcium channel have been identified in 13 patients recently. There have been 22 cases reported in the literature by 2016, mostly from the western hemisphere with none reported from Sri Lanka. Case presentation A 10-year-old girl born to healthy non-consanguineous parents with delayed development is described. She started walking unaided by 9 years with a significantly unsteady gait and her speech was similarly delayed. Physical examination revealed multiple cerebellar signs. Slit lamp examination of eyes revealed bilateral partial aniridia. Magnetic resonance imaging of brain at the age of 10 years revealed cerebellar (mainly vermian) hypoplasia. Genetic testing confirmed the clinical suspicion and demonstrated a heterozygous pathogenic variant c.7786_7788delAAG p.(Lys2596del) in the ITPR1 gene. Conclusion The report of this child with molecular confirmation of Gillespie syndrome highlights the need for careful evaluation of ophthalmological and neurological features in patients that enables correct clinical diagnosis. The availability of genetic testing enables more accurate counseling of the parents and patients regarding recurrence risks to other family members

    Physical and Functional Interaction of NCX1 and EAAC1 Transporters Leading to Glutamate-Enhanced ATP Production in Brain Mitochondria

    Get PDF
    Glutamate is emerging as a major factor stimulating energy production in CNS. Brain mitochondria can utilize this neurotransmitter as respiratory substrate and specific transporters are required to mediate the glutamate entry into the mitochondrial matrix. Glutamate transporters of the Excitatory Amino Acid Transporters (EAATs) family have been previously well characterized on the cell surface of neuronal and glial cells, representing the primary players for glutamate uptake in mammalian brain. Here, by using western blot, confocal microscopy and immunoelectron microscopy, we report for the first time that the Excitatory Amino Acid Carrier 1 (EAAC1), an EAATs member, is expressed in neuronal and glial mitochondria where it participates in glutamate-stimulated ATP production, evaluated by a luciferase-luciferin system. Mitochondrial metabolic response is counteracted when different EAATs pharmacological blockers or selective EAAC1 antisense oligonucleotides were used. Since EAATs are Na+-dependent proteins, this raised the possibility that other transporters regulating ion gradients across mitochondrial membrane were required for glutamate response. We describe colocalization, mutual activity dependency, physical interaction between EAAC1 and the sodium/calcium exchanger 1 (NCX1) both in neuronal and glial mitochondria, and that NCX1 is an essential modulator of this glutamate transporter. Only NCX1 activity is crucial for such glutamate-stimulated ATP synthesis, as demonstrated by pharmacological blockade and selective knock-down with antisense oligonucleotides. The EAAC1/NCX1-dependent mitochondrial response to glutamate may be a general and alternative mechanism whereby this neurotransmitter sustains ATP production, since we have documented such metabolic response also in mitochondria isolated from heart. The data reported here disclose a new physiological role for mitochondrial NCX1 as the key player in glutamate-induced energy production

    The genetic architecture of aniridia and Gillespie syndrome

    Get PDF

    Clonally expanded mitochondrial DNA deletions within the choroid plexus in multiple sclerosis

    Get PDF
    OBJECTIVE: Mitochondrial DNA deletions (Δ-mtDNA) are implicated in the pathogenesis of multiple sclerosis (MS), Parkinson’s disease (PD), Alzheimer’s disease (AD) and ageing. Given the diffuse nature of inflammation in MS, aim of this study was to determine whether Δ-mtDNA caused respiratory deficient cells in excess of age within choroid plexus (CP) and ongoing mutagenesis or clonal expansion accounted for the respiratory deficiency in MS. METHODS: Respiratory chain complex IV and complex II activity was determined sequentially using histochemistry. Δ-mtDNA were characterized using real time PCR, long range PCR, sequencing and single molecule PCR. Sources of reactive oxygen and nitrogen species (RONS) were explored using immunohistochemistry. RESULTS: Respiratory deficient cells (lacking complex IV and with intact complex II activity) within CP epithelium were in excess of age in MS, PD and AD. Subunit-I of complex IV was lacking to a greater extent in MS than controls. Percentage of respiratory deficient cells harboring >50% heteroplasmy level of Δ-mtDNA was significantly greater in MS than PD, AD and controls. Long range PCR and sequencing confirmed Δ-mtDNA. Single molecule PCR identified clonally expanded Δ-mtDNA in MS, despite an increase in sources of RONS. INTERPRETATION: Our findings establish clonal expansion of Δ-mtDNA causing respiratory deficiency in MS and the extraparenchymal intracranial location indicated the potential to involve multiple cell types. Understanding factors that influence clonal expansion of Δ-mtDNA, a molecular link between inflammation and delayed cellular energy failure, may identify potential therapeutic targets for progressive forms of MS as well as other neurodegenerative disorders

    Zebrafish regenerate full thickness optic nerve myelin after demyelination, but this fails with increasing age

    Get PDF
    INTRODUCTION: In the human demyelinating central nervous system (CNS) disease multiple sclerosis, remyelination promotes recovery and limits neurodegeneration, but this is inefficient and always ultimately fails. Furthermore, these regenerated myelin sheaths are thinner and shorter than the original, leaving the underlying axons potentially vulnerable. In rodent models, CNS remyelination is more efficient, so that in young animals (but not old) the number of myelinated axons is efficiently restored to normal, but in both young and old rodents, regenerated myelin sheaths are still short and thin. The reasons for these differences in remyelination efficiency, the thinner remyelinated myelin sheaths compared to developmental myelin and the subsequent effect on the underlying axon are unclear. We studied CNS remyelination in the highly regenerative adult zebrafish (Danio rerio), to better understand mechanisms of what we hypothesised would be highly efficient remyelination, and to identify differences to mammalian CNS remyelination, as larval zebrafish are increasingly used for high throughput screens to identify potential drug targets to improve myelination and remyelination. RESULTS: We developed a novel method to induce a focal demyelinating lesion in adult zebrafish optic nerve with no discernible axonal damage, and describe the cellular changes over time. Remyelination is indeed efficient in both young and old adult zebrafish optic nerves, and at 4 weeks after demyelination, the number of myelinated axons is restored to normal, but internode lengths are short. However, unlike in rodents or in humans, in young zebrafish these regenerated myelin sheaths were of normal thickness, whereas in aged zebrafish, they were thin, and remained so even 3 months later. This inability to restore normal myelin thickness in remyelination with age was associated with a reduced macrophage/microglial response. CONCLUSION: Zebrafish are able to efficiently restore normal thickness myelin around optic nerve axons after demyelination, unlike in mammals. However, this fails with age, when only thin myelin is achieved. This gives us a novel model to try and dissect the mechanism for restoring myelin thickness in CNS remyelination. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40478-014-0077-y) contains supplementary material, which is available to authorized users

    Promoting remyelination in multiple sclerosis-recent advances

    Get PDF
    We review the current state of knowledge of remyelination in multiple sclerosis (MS), concentrating on advances in the understanding of the pathology and the regenerative response, and we summarise progress on the development of new therapies to enhance remyelination aimed at reducing progressive accumulation of disability in MS. We discuss key target pathways identified in experimental models, as although most identified targets have not yet progressed to the stage of being tested in human clinical trials, they may provide treatment strategies for demyelinating diseases in the future. Finally, we discuss some of the problems associated with testing this class of drugs, where they might fit into the therapeutic arsenal and the gaps in our knowledge

    The multiple facets of drug resistance: one history, different approaches

    Full text link

    The phenotype of MEGF8-related Carpenter syndrome (CRPT2) is refined through the identification of eight new patients

    Get PDF
    \ua9 The Author(s) 2024. Carpenter syndrome (CRPTS) is a rare autosomal recessive condition caused by biallelic variants in genes that encode negative regulators of hedgehog signalling (RAB23 [CRPT1] or, more rarely, MEGF8 [CRPT2]), and is characterised by craniosynostosis, polysyndactyly, and other congenital abnormalities. We describe a further six families comprising eight individuals with MEGF8-associated CRPT2, increasing the total number of reported cases to fifteen, and refine the phenotype of CRPT2 compared to CRPT1. The core features of craniosynostosis, polysyndactyly and (in males) cryptorchidism are almost universal in both CRPT1 and CRPT2. However, laterality defects are present in nearly half of those with MEGF8-associated CRPT2, but are rare in RAB23-associated CRPT1. Craniosynostosis in CRPT2 commonly involves a single midline suture in comparison to the multi-suture craniosynostosis characteristic of CRPT1. No patient to date has carried two MEGF8 gene alterations that are both predicted to lead to complete loss-of-function, suggesting that a variable degree of residual MEGF8 activity may be essential for viability and potentially contributing to variable phenotypic severity. These data refine the phenotypic spectrum of CRPT2 in comparison to CRPT1 and more than double the number of likely pathogenic MEGF8 variants in this rare disorder
    corecore