94 research outputs found

    MMS observations of electron-scale filamentary currents in the reconnection exhaust and near the X line

    Get PDF
    © 2016. American Geophysical Union. All Rights Reserved.We report Magnetospheric Multiscale observations of macroscopic and electron-scale current layers in asymmetric reconnection. By intercomparing plasma, magnetic, and electric field data at multiple crossings of a reconnecting magnetopause on 22 October 2015, when the average interspacecraft separation was ~10km, we demonstrate that the ion and electron moments are sufficiently accurate to provide reliable current density measurements at 30ms cadence. These measurements, which resolve current layers narrower than the interspacecraft separation, reveal electron-scale filamentary Hall currents and electron vorticity within the reconnection exhaust far downstream of the X line and even in the magnetosheath. Slightly downstream of the X line, intense (up to 3ÎŒA/m2) electron currents, a super-AlfvĂ©nic outflowing electron jet, and nongyrotropic crescent shape electron distributions were observed deep inside the ion-scale magnetopause current sheet and embedded in the ion diffusion region. These characteristics are similar to those attributed to the electron dissipation/diffusion region around the X line

    Thin Current Sheet Behind the Dipolarization Front

    Get PDF
    We report a unique conjugate observation of fast flows and associated current sheet disturbances in the near-Earth magnetotail by MMS (Magnetospheric Multiscale) and Cluster preceding a positive bay onset of a small substorm at ∌14:10 UT, September 8, 2018. MMS and Cluster were located both at X ∌ −14 RE. A dipolarization front (DF) of a localized fast flow was detected by Cluster and MMS, separated in the dawn-dusk direction by ∌4 RE, almost simultaneously. Adiabatic electron acceleration signatures revealed from the comparison of the energy spectra confirm that both spacecraft encounter the same DF. We analyzed the change in the current sheet structure based on multi-scale multi-point data analysis. The current sheet thickened during the passage of DF, yet, temporally thinned subsequently associated with another flow enhancement centered more on the dawnward side of the initial flow. MMS and Cluster observed intense perpendicular and parallel current in the off-equatorial region mainly during this interval of the current sheet thinning. Maximum field-aligned currents both at MMS and Cluster are directed tailward. Detailed analysis of MMS data showed that the intense field-aligned currents consisted of multiple small-scale intense current layers accompanied by enhanced Hall-currents in the dawn-dusk flow-shear region. We suggest that the current sheet thinning is related to the flow bouncing process and/or to the expansion/activation of reconnection. Based on these mesoscale and small-scale multipoint observations, 3D evolution of the flow and current-sheet disturbances was inferred preceding the development of a substorm current wedge

    Reconnection Inside a Dipolarization Front of a Diverging Earthward Fast Flow

    Get PDF
    We examine a Dipolarization Front (DF) event with an embedded electron diffusion region (EDR), observed by the Magnetospheric Multiscale (MMS) spacecraft on 08 September 2018 at 14:51:30 UT in the Earth's magnetotail by applying multi-scale multipoint analysis methods. In order to study the large-scale context of this DF, we use conjunction observations of the Cluster spacecraft together with MMS. A polynomial magnetic field reconstruction technique is applied to MMS data to characterize the embedded electron current sheet including its velocity and the X-line exhaust opening angle. Our results show that the MMS and Cluster spacecraft were located in two counter-rotating vortex flows, and such flows may distort a flux tube in a way that the local magnetic shear angle is increased and localized magnetic reconnection may be triggered. Using multi-point data from MMS we further show that the local normalized reconnection rate is in the range of R ∌ 0.16 to 0.18. We find a highly asymmetric electron in- and outflow structure, consistent with previous simulations on strong guide-field reconnection events. This study shows that magnetic reconnection may not only take place at large-scale stable magnetopause or magnetotail current sheets but also in transient localized current sheets, produced as a consequence of the interaction between the fast Earthward flows and the Earth's dipole field

    Electron trapping in magnetic mirror structures at the edge of magnetopause flux ropes

    Get PDF
    Flux ropes are a proposed site for particle energization during magnetic reconnection, with several mechanisms proposed. Here, Magnetospheric Multiscale mission observations of magnetic mirror structures on the edge of two ion‐scale magnetopause flux ropes are presented. Donut‐shaped features in the electron pitch angle distributions provide evidence for electron trapping in the structures. Furthermore, both events show trapping with extended 3D structure along the body of the flux rope. Potential formation mechanisms, such as the magnetic mirror instability, are examined and the evolutionary states of the structures are compared. Pressure and force analysis suggest that such structures could provide an important electron acceleration mechanism for magnetopause flux ropes, and for magnetic reconnection more generally

    Dissipation of earthward propagating flux rope through re‐reconnection with geomagnetic field: An MMS case study

    Get PDF
    Three‐dimensional global hybrid simulations and observations have shown that earthward‐moving flux ropes (FRs) can undergo magnetic reconnection (or re‐reconnection) with the near‐Earth dipole field to create dipolarization front (DF)‐like signatures that are immediately preceded by brief intervals of negative BZ. The simultaneous erosion of the southward BZ field at the leading edge of the FR and continuous reconnection of lobe magnetic flux at the X‐line tailward of the FR result in the asymmetric south‐north BZ signature in many earthward‐moving FRs and possibly DFs with negative BZ dips prior to their observation. In this study, we analyzed Magnetospheric MultiScale (MMS) observation of fields and plasma signatures associated with the encounter of an ion diffusion region ahead of an earthward‐moving FR on 3 August 2017. The signatures of this re‐reconnection event were (i) +/− BZ reversal, (ii) −/+ bipolar‐type quadrupolar Hall magnetic fields, (iii) northward super‐AlfvĂ©nic electron outflow jet of ~1,000–1,500 km/s, (iv) Hall electric field of ~15 mV/m, (v) intense currents of ~40–100 nA/m2, and (vi) J·Eâ€Č ~0.11 nW/m3. Our analysis suggests that the MMS spacecraft encounters the ion and electron diffusion regions but misses the X‐line. Our results are in good agreement with particle‐in‐cell simulations of Lu et al. (2016, https://doi.org/10.1002/2016JA022815). We computed a dimensionless reconnection rate of ~0.09 for this re‐reconnection event and through modeling, estimating that the FR would fully dissipate by −16.58 RE. We demonstrated pertubations in the high‐latitude ionospheric currents at the same time of the dissipation of earthward‐moving FRs using ground‐ and space‐based measurements

    Multiscale Currents Observed by MMS in the Flow Braking Region

    Get PDF
    We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold E × B drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system
    • 

    corecore