199 research outputs found

    The conventional gait model - success and limitations

    Get PDF
    The Conventional Gait Model (CGM) is a generic name for a family of closely related and very widely used biomechanical models for gait analysis. After describing its history, the core attributes of the model are described followed by evaluation of its strengths and weaknesses. An analysis of the current and future requirements for practical biomechanical models for clinical and other gait analysis purposes which have been rigorously calibrated suggests that the CGM is better suited for this purpose than any other currently available model. Modifications are required, however, and a number are proposed

    Clinical factors associated with a conservative gait pattern in older male veterans with diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with diabetes and peripheral neuropathy are at higher risk for falls. People with diabetes sometimes adopt a more conservative gait pattern with decreased walking speed, widened base, and increased double support time. The purpose of this study was to use a multivariate approach to describe this conservative gait pattern.</p> <p>Methods</p> <p>Male veterans (mean age = 67 years; SD = 9.8; range 37–86) with diabetes (n = 152) participated in this study from July 2000 to May 2001 at the Veterans Affairs Medical Center, White River Junction, VT. Various demographic, clinical, static mobility, and plantar pressure measures were collected. Conservative gait pattern was defined by visual gait analysis as failure to demonstrate a heel-to-toe gait during the propulsive phase of gait.</p> <p>Results</p> <p>Patients with the conservative gait pattern had lower walking speed and decreased stride length compared to normal gait. (0.68 m/s v. 0.91 m/s, <it>p </it>< 0.001; 1.04 m v. 1.24 m, <it>p </it>< 0.001) Age, monofilament insensitivity, and Romberg's sign were significantly higher; and ankle dorsiflexion was significantly lower in the conservative gait pattern group. In the multivariate analysis, walking speed, age, ankle dorsiflexion, and callus were retained in the final model describing 36% of the variance. With the inclusion of ankle dorsiflexion in the model, monofilament insensitivity was no longer an independent predictor.</p> <p>Conclusion</p> <p>Our multivariate investigation of conservative gait in diabetes patients suggests that walking speed, advanced age, limited ankle dorsiflexion, and callus describe this condition more so than clinical measures of neuropathy.</p

    Coupled variability in primary sensory areas and the hippocampus during spontaneous activity

    Get PDF
    The cerebral cortex is an anatomically divided and functionally specialized structure. It includes distinct areas, which work on different states over time. The structural features of spiking activity in sensory cortices have been characterized during spontaneous and evoked activity. However, the coordination among cortical and sub-cortical neurons during spontaneous activity across different states remains poorly characterized. We addressed this issue by studying the temporal coupling of spiking variability recorded from primary sensory cortices and hippocampus of anesthetized or freely behaving rats. During spontaneous activity, spiking variability was highly correlated across primary cortical sensory areas at both small and large spatial scales, whereas the cortico-hippocampal correlation was modest. This general pattern of spiking variability was observed under urethane anesthesia, as well as during waking, slow-wave sleep and rapid-eye-movement sleep, and was unchanged by novel stimulation. These results support the notion that primary sensory areas are strongly coupled during spontaneous activity.project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). NAPV was supported by Centro Universitario do Rio Grande do Norte, Champalimaud Foundation, and Brazilian National Council for Scientific and Technological Development (CNPq, Grant 249991/2013-6), CC-S (SFRH/BD/51992/2012). AJR (IF/00883/2013). SR by UFRN, CNPq (Research Productivity Grant 308775/2015-5), and S. Paulo Research Foundation FAPESP - Center for Neuromathematics (Grant 2013/07699-0)info:eu-repo/semantics/publishedVersio

    Effects of Androgen Receptor and Androgen on Gene Expression in Prostate Stromal Fibroblasts and Paracrine Signaling to Prostate Cancer Cells

    Get PDF
    The androgen receptor (AR) is expressed in a subset of prostate stromal cells and functional stromal cell AR is required for normal prostate developmental and influences the growth of prostate tumors. Although we are broadly aware of the specifics of the genomic actions of AR in prostate cancer cells, relatively little is known regarding the gene targets of functional AR in prostate stromal cells. Here, we describe a novel human prostate stromal cell model that enabled us to study the effects of AR on gene expression in these cells. The model involves a genetically manipulated variant of immortalized human WPMY-1 prostate stromal cells that overexpresses wildtype AR (WPMY-AR) at a level comparable to LNCaP cells and is responsive to dihydrotestosterone (DHT) stimulation. Use of WPMY-AR cells for gene expression profiling showed that the presence of AR, even in the absence of DHT, significantly altered the gene expression pattern of the cells compared to control (WPMY-Vec) cells. Treatment of WPMY-AR cells, but not WPMY-Vec control cells, with DHT resulted in further changes that affected the expression of 141 genes by 2-fold or greater compared to vehicle treated WPMY-AR cells. Remarkably, DHT significantly downregulated more genes than were upregulated but many of these changes reversed the initial effects of AR overexpression alone on individual genes. The genes most highly effected by DHT treatment were categorized based upon their role in cancer pathways or in cell signaling pathways (transforming growth factor-β, Wnt, Hedgehog and MAP Kinase) thought to be involved in stromal-epithelial crosstalk during prostate or prostate cancer development. DHT treatment of WPMY-AR cells was also sufficient to alter their paracrine potential for prostate cancer cells as conditioned medium from DHT-treated WPMY-AR significantly increased growth of LNCaP cells compared to DHT-treated WPMY-Vec cell conditioned medium

    Effect of Ambrotose AO® on resting and exercise-induced antioxidant capacity and oxidative stress in healthy adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this investigation was to determine the effects of a dietary supplement (Ambrotose AO<sup>®</sup>) on resting and exercise-induced blood antioxidant capacity and oxidative stress in exercise-trained and untrained men and women.</p> <p>Methods</p> <p>25 individuals (7 trained and 5 untrained men; 7 trained and 6 untrained women) received Ambrotose AO<sup>® </sup>(4 capsules per day = 2 grams per day) or a placebo for 3 weeks in a random order, double blind cross-over design (with a 3 week washout period). Blood samples were collected at rest, and at 0 and 30 minutes following a graded exercise treadmill test (GXT) performed to exhaustion, both before and after each 3 week supplementation period. Samples were analyzed for Trolox Equivalent Antioxidant Capacity (TEAC), Oxygen Radical Absorbance Capacity (ORAC), malondialdehyde (MDA), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), and nitrate/nitrite (NOx). Quality of life was assessed using the SF-12 form and exercise time to exhaustion was recorded. Resting blood samples were analyzed for complete blood count (CBC), metabolic panel, and lipid panel before and after each 3 week supplementation period. Dietary intake during the week before each exercise test was recorded.</p> <p>Results</p> <p>No condition effects were noted for SF-12 data, for GXT time to exhaustion, or for any variable within the CBC, metabolic panel, or lipid panel (p > 0.05). Treatment with Ambrotose AO<sup>® </sup>resulted in an increase in resting levels of TEAC (p = 0.02) and ORAC (p < 0.0001). No significant change was noted in resting levels of MDA, H<sub>2</sub>O<sub>2</sub>, or NOx (p > 0.05). Exercise resulted in an acute increase in TEAC, MDA, and H<sub>2</sub>O<sub>2 </sub>(p < 0.05), all which were higher at 0 minutes post exercise compared to pre exercise (p < 0.05). No condition effects were noted for exercise related data (p > 0.05), with the exception of ORAC (p = 0.0005) which was greater at 30 minutes post exercise for Ambrotose AO<sup>® </sup>compared to placebo.</p> <p>Conclusion</p> <p>Ambrotose AO<sup>® </sup>at a daily dosage of 4 capsules per day increases resting blood antioxidant capacity and may enhance post exercise antioxidant capacity. However, no statistically detected difference is observed in resting or exercise-induced oxidative stress biomarkers, in quality of life, or in GXT time to exhaustion.</p

    Measurement of Upper Limb Range of Motion Using Wearable Sensors: A Systematic Review.

    Get PDF
    Background: Wearable sensors are portable measurement tools that are becoming increasingly popular for the measurement of joint angle in the upper limb. With many brands emerging on the market, each with variations in hardware and protocols, evidence to inform selection and application is needed. Therefore, the objectives of this review were related to the use of wearable sensors to calculate upper limb joint angle. We aimed to describe (i) the characteristics of commercial and custom wearable sensors, (ii) the populations for whom researchers have adopted wearable sensors, and (iii) their established psychometric properties. Methods: A systematic review of literature was undertaken using the following data bases: MEDLINE, EMBASE, CINAHL, Web of Science, SPORTDiscus, IEEE, and Scopus. Studies were eligible if they met the following criteria: (i) involved humans and/or robotic devices, (ii) involved the application or simulation of wearable sensors on the upper limb, and (iii) calculated a joint angle. Results: Of 2191 records identified, 66 met the inclusion criteria. Eight studies compared wearable sensors to a robotic device and 22 studies compared to a motion analysis system. Commercial (n = 13) and custom (n = 7) wearable sensors were identified, each with variations in placement, calibration methods, and fusion algorithms, which were demonstrated to influence accuracy. Conclusion: Wearable sensors have potential as viable instruments for measurement of joint angle in the upper limb during active movement. Currently, customised application (i.e. calibration and angle calculation methods) is required to achieve sufficient accuracy (error < 5°). Additional research and standardisation is required to guide clinical application

    Evaluating the effects of increasing physical activity to optimize rehabilitation outcomes in hospitalized older adults (MOVE Trial): Study protocol for a randomized controlled trial

    Get PDF
    Background: Older adults who have received inpatient rehabilitation often have significant mobility disability at discharge. Physical activity levels in rehabilitation are also low. It is hypothesized that providing increased physical activity to older people receiving hospital-based rehabilitation will lead to better mobility outcomes at discharge. Methods/Design: A single blind, parallel-group, multisite randomized controlled trial with blinded assessment of outcome and intention-to-treat analysis. The cost effectiveness of the intervention will also be examined. Older people (age &gt;60 years) undergoing inpatient rehabilitation to improve mobility will be recruited from geriatric rehabilitation units at two Australian hospitals. A computer-generated blocked stratified randomization sequence will be used to assign 198 participants in a 1:1 ratio to either an 'enhanced physical activity' (intervention) group or a 'usual care plus' (control) group for the duration of their inpatient stay. Participants will receive usual care and either spend time each week performing additional physical activities such as standing or walking (intervention group) or performing an equal amount of social activities that have minimal impact on mobility such as card and board games (control group). Self-selected gait speed will be measured using a 6-meter walk test at discharge (primary outcome) and 6 months follow-up (secondary outcome). The study is powered to detect a 0.1 m/sec increase in self-selected gait speed in the intervention group at discharge. Additional measures of mobility (Timed Up and Go, De Morton Mobility Index), function (Functional Independence Measure) and quality of life will be obtained as secondary outcomes at discharge and tertiary outcomes at 6 months follow-up. The trial commenced recruitment on 28 January 2014. Discussion: This study will evaluate the efficacy and cost effectiveness of increasing physical activity in older people during inpatient rehabilitation. These results will assist in the development of evidenced-based rehabilitation programs for this population. Trial registration: Australian New Zealand Clinical Trials Registry ACTRN12613000884707(Date of registration 08 August 2013); ClinicalTrials.gov Identifier NCT01910740(Date of registration 22 July 2013)

    Effect of a low fat versus a low carbohydrate weight loss dietary intervention on biomarkers of long term survival in breast cancer patients ('CHOICE'): study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Weight loss in overweight or obese breast cancer patients is associated with an improved prognosis for long term survival. However, it is not clear whether the macronutrient composition of the chosen weight loss dietary plan imparts further prognostic benefit. A study protocol is presented for a dietary intervention to investigate the effects of weight loss dietary patterns that vary markedly in fat and carbohydrate contents on biomarkers of exposure to metabolic processes that may promote tumorigenesis and that are predictive of long term survival. The study will also determine how much weight must be lost for biomarkers to change in a favorable direction.</p> <p>Methods/Design</p> <p>Approximately 370 overweight or obese postmenopausal breast cancer survivors (body mass index: 25.0 to 34.9 kg/m<sup>2</sup>) will be accrued and assigned to one of two weight loss intervention programs or a non-intervention control group. The dietary intervention is implemented in a free living population to test the two extremes of popular weight loss dietary patterns: a high carbohydrate, low fat diet versus a low carbohydrate, high fat diet. The effects of these dietary patterns on biomarkers for glucose homeostasis, chronic inflammation, cellular oxidation, and steroid sex hormone metabolism will be measured. Participants will attend 3 screening and dietary education visits, and 7 monthly one-on-one dietary counseling and clinical data measurement visits in addition to 5 group visits in the intervention arms. Participants in the control arm will attend two clinical data measurement visits at baseline and 6 months. The primary outcome is high sensitivity C-reactive protein. Secondary outcomes include interleukin-6, tumor necrosis factor-α, insulin-like growth factor-1 (IGF), IGF binding protein-3, 8-isoprostane-F2-alpha, estrone, estradiol, progesterone, sex hormone binding globulin, adiponectin, and leptin.</p> <p>Discussion</p> <p>While clinical data indicate that excess weight for height is associated with poor prognosis for long term survival, little attention is paid to weight control in the clinical management of breast cancer. This study will provide information that can be used to answer important patient questions about the effects of dietary pattern and magnitude of weight loss on long term survival following breast cancer treatment.</p> <p>Clinical Trial Registration</p> <p>CA125243</p
    corecore