52 research outputs found

    Universality of Thermodynamic Constants Governing Biological Growth Rates

    Get PDF
    Background: Mathematical models exist that quantify the effect of temperature on poikilotherm growth rate. One family of such models assumes a single rate-limiting ‘master reaction ’ using terms describing the temperature-dependent denaturation of the reaction’s enzyme. We consider whether such a model can describe growth in each domain of life. Methodology/Principal Findings: A new model based on this assumption and using a hierarchical Bayesian approach fits simultaneously 95 data sets for temperature-related growth rates of diverse microorganisms from all three domains of life, Bacteria, Archaea and Eukarya. Remarkably, the model produces credible estimates of fundamental thermodynamic parameters describing protein thermal stability predicted over 20 years ago. Conclusions/Significance: The analysis lends support to the concept of universal thermodynamic limits to microbial growth rate dictated by protein thermal stability that in turn govern biological rates. This suggests that the thermal stability of proteins is a unifying property in the evolution and adaptation of life on earth. The fundamental nature of this conclusion has importance for many fields of study including microbiology, protein chemistry, thermal biology, and ecological theory including, for example, the influence of the vast microbial biomass and activity in the biosphere that is poorly described in current climate models

    An evidence-based framework for predicting the impact of differing autotroph-heterotroph thermal sensitivities on consumer-prey dynamics

    Get PDF
    Increased temperature accelerates vital rates, influencing microbial population and wider ecosystem dynamics, for example, the predicted increases in cyanobacterial blooms associated with global warming. However, heterotrophic and mixotrophic protists, which are dominant grazers of microalgae, may be more thermally sensitive than autotrophs, and thus prey could be suppressed as temperature rises. Theoretical and meta-analyses have begun to address this issue, but an appropriate framework linking experimental data with theory is lacking. Using ecophysiological data to develop a novel model structure, we provide the first validation of this thermal sensitivity hypothesis: increased temperature improves the consumer’s ability to control the autotrophic prey. Specifically, the model accounts for temperature effects on auto- and mixotrophs and ingestion, growth and mortality rates, using an ecologically and economically important system (cyanobacteria grazed by a mixotrophic flagellate). Once established, we show the model to be a good predictor of temperature impacts on consumer–prey dynamics by comparing simulations with microcosm observations. Then, through simulations, we indicate our conclusions remain valid, even with large changes in bottom-up factors (prey growth and carrying capacity). In conclusion, we show that rising temperature could, counterintuitively, reduce the propensity for microalgal blooms to occur and, critically, provide a novel model framework for needed, continued assessment

    Thermal behaviour of Anopheles stephensi in response to infection with malaria and fungal entomopathogens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Temperature is a critical determinant of the development of malaria parasites in mosquitoes, and hence the geographic distribution of malaria risk, but little is known about the thermal preferences of <it>Anopheles</it>. A number of other insects modify their thermal behaviour in response to infection. These alterations can be beneficial for the insect or for the infectious agent. Given current interest in developing fungal biopesticides for control of mosquitoes, <it>Anopheles stephensi </it>were examined to test whether mosquitoes showed thermally-mediated behaviour in response to infection with fungal entomopathogens and the rodent malaria, <it>Plasmodium yoelii</it>.</p> <p>Methods</p> <p>Over two experiments, groups of <it>An. stephensi </it>were infected with one of three entomopathogenic fungi, and/or <it>P. yoelii</it>. Infected and uninfected mosquitoes were released on to a thermal gradient (14 – 38°C) for "snapshot" assessments of thermal preference during the first five days post-infection. Mosquito survival was monitored for eight days and, where appropriate, oocyst prevalence and intensity was assessed.</p> <p>Results and conclusion</p> <p>Both infected and uninfected <it>An. stephensi </it>showed a non-random distribution on the gradient, indicating some capacity to behaviourally thermoregulate. However, chosen resting temperatures were not altered by any of the infections. There is thus no evidence that thermally-mediated behaviours play a role in determining malaria prevalence or that they will influence the performance of fungal biopesticides against adult <it>Anopheles</it>.</p

    Coping with Temperature at the Warm Edge – Patterns of Thermal Adaptation in the Microbial Eukaryote Paramecium caudatum

    Get PDF
    Ectothermic organisms are thought to be severely affected by global warming since their physiological performance is directly dependent on temperature. Latitudinal and temporal variations in mean temperatures force ectotherms to adapt to these complex environmental conditions. Studies investigating current patterns of thermal adaptation among populations of different latitudes allow a prediction of the potential impact of prospective increases in environmental temperatures on their fitness.In this study, temperature reaction norms were ascertained among 18 genetically defined, natural clones of the microbial eukaryote Paramecium caudatum. These different clones have been isolated from 12 freshwater habitats along a latitudinal transect in Europe and from 3 tropical habitats (Indonesia). The sensitivity to increasing temperatures was estimated through the analysis of clone specific thermal tolerances and by relating those to current and predicted temperature data of their natural habitats. All investigated European clones seem to be thermal generalists with a broad thermal tolerance and similar optimum temperatures. The weak or missing co-variation of thermal tolerance with latitude does not imply local adaptation to thermal gradients; it rather suggests adaptive phenotypic plasticity among the whole European subpopulation. The tested Indonesian clones appear to be locally adapted to the less variable, tropical temperature regime and show higher tolerance limits, but lower tolerance breadths.Due to the lack of local temperature adaptation within the European subpopulation, P. caudatum genotypes at the most southern edge of their geographic range seem to suffer from the predicted increase in magnitude and frequency of summer heat waves caused by climate change

    Resolution of inflammation: a new therapeutic frontier

    Get PDF
    Dysregulated inflammation is a central pathological process in diverse disease states. Traditionally, therapeutic approaches have sought to modulate the pro- or anti-inflammatory limbs of inflammation, with mixed success. However, insight into the pathways by which inflammation is resolved has highlighted novel opportunities to pharmacologically manipulate these processes — a strategy that might represent a complementary (and perhaps even superior) therapeutic approach. This Review discusses the state of the art in the biology of resolution of inflammation, highlighting the opportunities and challenges for translational research in this field

    Economic value of in vitro fertilization in Ukraine, Belarus, and Kazakhstan

    Get PDF
    Olena Mandrik,1 Saskia Knies,1,2 Johan L Severens1,3 1Institute of Health Policy and Management, Erasmus University, Rotterdam, 2National Health Care Institute, Diemen, 3iMTA Institute of Medical Technology Assessment, Erasmus University, Rotterdam, the Netherlands Background: An economic value calculation was performed to estimate the lifetime net present value of in vitro fertilization (IVF) in Ukraine, Belarus, and Kazakhstan. Methods: Net lifetime tax revenues were used to represent governmental benefits accruing from a hypothetical cohort of an IVF population born in 2009 using the methodology of generational accounting. Governmental expenses related to this population included social benefits, education and health care, unemployment support, and pensions. Where available, country-specific data referencing official sources were applied. Results: The average health care cost needed to achieve one additional birth from the governmental perspective varied from 2,599inUkraineto2,599 in Ukraine to 5,509 in Belarus. The net present value from the population born using IVF was positive in all countries: for Ukraine (9,839),Belarus(9,839), Belarus (21,702), and Kazakhstan (2,295).Thebreak−evencostsofdrugsandsuppliesperIVFprocedureisexpectedtobe2,295). The break-even costs of drugs and supplies per IVF procedure is expected to be 3,870, 8,530,and8,530, and 1,780, respectively. Probabilistic sensitivity analyses based on 5,000 simulations show that the average net present value per person remains positive: 1,894±7,619, 27,925±12,407, and 17,229±24,637 in Ukraine, Belarus, and Kazakhstan, respectively. Conclusion: Financing IVF may represent a good investment in terms of governmental financial returns, even in lower-income countries with state-financed health care systems such as Ukraine, Belarus, and Kazakhstan. Keywords: in vitro fertilization, economic value of life, developing countrie

    PMC56 THE TRANSFERABILITY OF ECONOMIC EVALUATIONS. VALIDATING THE MODEL OF WELTE

    Get PDF
    • …
    corecore