593 research outputs found

    Self-Focusing of Rayleigh Waves: Simulation and Experiment

    Get PDF
    In earlier work [1,2] a simple idea for self-focusing of a linear array has been used for Rayleigh and Lamb waves. The self-focusing procedure automatically moves the focal region of the array towards the defect that produces the largest backscattered signal by adjusting the excitation times of the elements of the array. Experimental results demonstrate the ability to self-focus Rayleigh waves and Lamb waves on defects in thick slabs and thin sheets. The aim of this paper is to supplement the experimental results with a measurement model of the self-focusing of surface waves. A model for the surface wave generated by a single element of the linear array has been developed. The field generated by the entire array has been simulated by using superposition

    The feasibility of brief dog assisted therapy on university students stress levels: The PAwS study.

    Get PDF
    Background: Pet therapy is becoming increasingly popular and is used in a variety of ways from encouraging communication in older adults to improving wellbeing in those with serious mental illness. Increasingly Universities have been offering pet therapy to students in an effort to reduce stress. However, little evidence currently exists to support the effectiveness of reducing measurable stress levels after a standalone drop-in unstructured session. The University of Sheffield’s Counselling Service works in partnership with Guide Dogs for the Blind to give students access to calm, well-trained animals for informal group stress relief. Aims: To assess the feasibility of implementing and evaluating unstructured group interventions with a Guide Dog in training within the university student population. Methods: One hundred and thirty-one students who attended pet therapy at the University Counselling Service were recruited on a voluntary basis to take part in the research. Stress, measured on the state trait anxiety inventory, and blood pressure were taken before and after a 15-min intervention. Results: All measures showed a statistically significant reduction immediately after the intervention. Conclusion: Short interactions with a Guide Dog in training appear to reduce stress in University students. A controlled study is required to investigate further

    Carbon-nanotube-interfaced glass fiber scaffold for regeneration of transected sciatic nerve.

    Get PDF
    Carbon nanotubes (CNTs), with their unique and unprecedented properties, have become very popular for the repair of tissues, particularly for those requiring electrical stimuli. Whilst most reports have demonstrated in vitro neural cell responses of the CNTs, few studies have been performed on the in vivo efficacy of CNT-interfaced biomaterials in the repair and regeneration of neural tissues. Thus, we report here for the first time the in vivo functions of CNT-interfaced nerve conduits in the regeneration of transected rat sciatic nerve. Aminated CNTs were chemically tethered onto the surface of aligned phosphate glass microfibers (PGFs) and CNT-interfaced PGFs (CNT-PGFs) were successfully placed into three-dimensional poly(l/d-lactic acid) (PLDLA) tubes. An in vitro study confirmed that neurites of dorsal root ganglion outgrew actively along the aligned CNT-PGFs and that the CNT interfacing significantly increased the maximal neurite length. Sixteen weeks after implantation of a CNT-PGF nerve conduit into the 10mm gap of a transected rat sciatic nerve, the number of regenerating axons crossing the scaffold, the cross-sectional area of the re-innervated muscles and the electrophysiological findings were all significantly improved by the interfacing with CNTs. This first in vivo effect of using a CNT-interfaced scaffold in the regeneration process of a transected rat sciatic nerve strongly supports the potential use of CNT-interfaced PGFs at the interface between the nerve conduit and peripheral neural tissues

    Molecular targets for the protodynamic action of cis-urocanic acid in human bladder carcinoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>cis-urocanic acid (cis-UCA) is an endogenous amino acid metabolite capable of transporting protons from the mildly acidic extracellular medium into the cell cytosol. The resulting intracellular acidification suppresses many cellular activities. The current study was aimed at characterizing the molecular mechanisms underlying cis-UCA-mediated cytotoxicity in cultured cancer cells.</p> <p>Methods</p> <p>5367 bladder carcinoma cells were left untreated or treated with cis-UCA. Cell death was assessed by measuring caspase-3 activity, mitochondrial membrane polarization, formation and release of cytoplasmic histone-associated DNA fragments, and cellular permeabilization. Cell viability and metabolic activity were monitored by colorimetric assays. Nuclear labelling was used to quantify the effects of cis-UCA on cell cycle. The activity of the ERK and JNK signalling pathways was studied by immunoblotting with specific antibodies. Phosphatase activity in cis-UCA-treated cells was determined by assay kits measuring absorbance resulting from the dephosphorylation of an artificial substrate. All statistical analyses were performed using the two-way Student's t-test (p < 0.05).</p> <p>Results</p> <p>Here we report that treatment of the 5637 human bladder carcinoma cells with 2% cis-UCA induces both apoptotic and necrotic cell death. In addition, metabolic activity of the 5637 cells is rapidly impaired, and the cells arrest in cell cycle in response to cis-UCA. Importantly, we show that cis-UCA promotes the ERK and JNK signalling pathways by efficiently inhibiting the activity of serine/threonine and tyrosine phosphatases.</p> <p>Conclusions</p> <p>Our studies elucidate how cis-UCA modulates several cellular processes, thereby inhibiting the proliferation and survival of bladder carcinoma cells. These anti-cancer effects make cis-UCA a potential candidate for the treatment of non-muscle invasive bladder carcinoma.</p

    Garlic arrests MDA-MB-435 cancer cells in mitosis, phosphorylates the proapoptotic BH3-only protein BimEL and induces apoptosis

    Get PDF
    Components of garlic (Allium sativum) can cause disruption of microtubules, cell cycle arrest, and apoptosis in cancer cells. We show here that a water-soluble extract of garlic arrested MDA-MB-435 cancer cells in mitosis and caused apoptosis. The proapoptotic BH3-only, bcl-2 family protein BimEL, which in healthy cells can be tightly sequestered to the microtubule-associated dynein motor complex, was modified after garlic treatment. The main effect of garlic on BimEL was a considerable increase in a phosphorylated form of the protein. This phosphorylation(s), probably partly dependent on c-jun N-terminal kinase activity, promoted mitochondrial localisation of BimEL. Furthermore, inhibition of extracellular signal-regulated kinases 1/2 increased the amount of another form of BimEL present in the mitochondrial cellular fraction. Treatment of cells with the garlic compound diallyl disulphide had similar effects on BimEL. The results indicate that the apoptotic effect of garlic and a combination of garlic and the inhibitor of extracellular signal-regulated kinases 1/2 in MDA-MB-435 cells partly is due to modifications that are necessary for translocation of the proapoptotic protein BimEL to mitochondria where it executes its proapoptotic function
    • …
    corecore