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Carbon nanotubes (CNTs), with their unique and unprecedented properties, have become very popular
for the repair of tissues, particularly for those requiring electrical stimuli. Whilst most reports have dem-
onstrated in vitro neural cell responses of the CNTs, few studies have been performed on the in vivo effi-
cacy of CNT-interfaced biomaterials in the repair and regeneration of neural tissues. Thus, we report here
for the first time the in vivo functions of CNT-interfaced nerve conduits in the regeneration of transected
rat sciatic nerve. Aminated CNTs were chemically tethered onto the surface of aligned phosphate glass
microfibers (PGFs) and CNT-interfaced PGFs (CNT-PGFs) were successfully placed into three-dimensional
poly(r/p-lactic acid) (PLDLA) tubes. An in vitro study confirmed that neurites of dorsal root ganglion out-
grew actively along the aligned CNT-PGFs and that the CNT interfacing significantly increased the max-
imal neurite length. Sixteen weeks after implantation of a CNT-PGF nerve conduit into the 10 mm gap of
a transected rat sciatic nerve, the number of regenerating axons crossing the scaffold, the cross-sectional
area of the re-innervated muscles and the electrophysiological findings were all significantly improved by
the interfacing with CNTs. This first in vivo effect of using a CNT-interfaced scaffold in the regeneration
process of a transected rat sciatic nerve strongly supports the potential use of CNT-interfaced PGFs at the
interface between the nerve conduit and peripheral neural tissues.
© 2014 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
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1. Introduction

Peripheral nerve injury is frequently encountered in the clinical
setting. An injured peripheral nerve can regenerate spontaneously,
but the regenerative capacity is limited in long defects and severe
injury [1]. Current medical and surgical management techniques,
including autologous nerve grafts and allografts, are in most cases
not sufficient for complete regeneration of the damaged peripheral
nerve [2]. Artificial nerve conduits, such as single hollow tubes, are
commercially available for the connection of transected peripheral
nerves, but are not thought to be suitable as a physical guide for
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the regeneration of a long defect [3]. Many types of scaffold config-
uration and fabrication, including intraluminal microchannel for-
mation [4] and electrospun nanostructured scaffolds [5,6], have
been attempted to give physical and biological cues for outgrowing
axons and to overcome the limitations of regeneration in the
peripheral nervous system. The delivery of growth factors [7],
pharmacological agents [8], stem cells [9] or Schwann cells [10]
within the nerve conduit might be other options for improving
neural regeneration [11,12].

Intraluminal structures for physical guidance of outgrowing
axons have been developed using collagen fibers [13], denatured
muscle tissue [14] and aligned phosphate glass fiber (PGF) bundles
[15], though the results thus far have proved unsatisfactory.

Carbon nanotubes (CNTs) have unique chemical, mechanical,
structural and electrical properties that make them attractive for
the repair and regeneration of tissues, including nerves, and func-
tionalized CNTs have also been applied to stroke and spinal cord
injury models [16-18]. A body of key literature has already
demonstrated the significant and profound effects of CNTs,
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particularly on nerve cells and even stem cells, with regard to their
neurite outgrowth and neuronal differentiation [19-23], and CNT-
based substrates have been suggested as potential agents for the
stimulation of neuronal functions and the repair and regeneration
of damaged and diseased neural tissues [18,24]. The nanotopo-
graphical and biochemical features and electrical conductivity of
CNTs may mediate neural modulation [25]. Therefore, CNTs are
expected to have synergistic effects on peripheral nerve regenera-
tion when interfaced with an intraluminar structured scaffold.
However, most of the studies mentioned were performed in vitro,
and there is little evidence about the in vivo functions of CNT-
interfaced biomaterials in nerve damage models.

Therefore, we show here for the first time the in vivo effects of
CNT-interfaced substrates on nerve regeneration using a transect-
ed rat sciatic nerve model. For this, we chemically linked function-
alized CNTs onto the surface of aligned PGF bundles, aiming at
utilizing CNTs as an interfacing material while the aligned fiber
bundles are expected to function for physical guidance. Our previ-
ous studies on PGF have shown that aligned PGFs within a collagen
scaffold were effective in guiding nerve tissues in a transected rat
sciatic nerve model as well as in a transected rat spinal cord injury
model [15]. PGFs, a class of optical glasses composed of metaphos-
phates of various metals, offer biocompatibility and tailored direc-
tionality; as such, they are considered to be suitable for the
regeneration of tissues requiring directional guidance, including
muscle and nerve [15,26,27]. We implanted a CNT-interfaced PGF
neural scaffold in a 10 mm transected sciatic nerve for 16 weeks
and the effects on axonal guidance, reinnervation of muscles and
the electrophysiological functions were delineated and compared
with the findings for a non-interfaced PGF scaffold. It is hoped that
this first in vivo study using a CNT-interfaced biomaterial scaffold
will provide some informative and pioneering concepts on the pos-
sible utility of CNT interfacing as a novel guide and scaffold for the
repair and regeneration of nerve tissues.

2. Materials and methods
2.1. Preparation of CNT-PGFs and nerve scaffolds

The composition of phosphate glass was P,05-Ca0O-Na,O-
Fe,03, with a 50-40-5-5 mol.% ratio. The generation of microfiber
bundles of the phosphate glass has been described in detail else-
where [15]. Produced microfibers were aligned using a microcomb,
fixed on one end with heat-melted poly(caprolactone) (PCL;
Sigma-Aldrich, St. Louis, MO, USA) solution and then dried. The
aligned microfibers were cut to a length and width of about
18 mm, then fixed on the other end with PCL, which can be directly
applied in both in vitro and in vivo experiments. Together with the
microfiber form, a disc of the phosphate glass was also prepared for
characterization of the surface modification of the phosphate glass,
after sintering phosphate glass powder of the same composition.

The aligned PGF bundle was interfaced with CNTs, so that it
could play the role of a guiding substrate for the neural cells, as
depicted in Fig. 1A. The series of chemical reactions for this CNT
tethering is shown schematically in Fig. 1B-D. First, the glass sur-
faces were positively charged with amine residues. The glass micro-
fiber bundles and discs were pretreated with 1 N hydrochloric acid
for 5 min, treated with 2.5% 3-aminopropyl-triethoxysilane (APTES;
Sigma-Aldrich) at pH 5.0 for 10s, then dried with a heat gun
(~120°C) 10 times (Fig. 1B). CNT solution was prepared after car-
boxylation of raw CNTs by the acid oxidation method. Briefly,
0.5 g of CNTs (multi-walled, 15-20 nm outer diameter, 10-20 pum
length; EM-Power Co., Asan, Korea) was added to H,SO4/HNO;
1:1 aqueous solution and refluxed at 80 °C for 2 days, followed by
filtration through a 0.4 um Millipore membrane. The resultant

carboxylated CNTs were washed and dried under a vacuum, then
dissolved in ethanol to a concentration of 0.0025 wt.%. The aminat-
ed glass bundles and discs were then soaked in the CNT-COOH
solution with 0.006 mM 1-ethyl-3-(3-dimethylaminopropyl) car-
bodiimide hydrochloride (EDC; Sigma-Aldrich) at room tempera-
ture for 3 h to enable amide bonds to form (Fig. 1C). The CNT-PGF
surface was further functionalized with amine groups by carbodi-
imide crosslinking with 0.1 M ethylenediamine (Sigma-Aldrich)
and 0.012 mM EDC at pH 5.0 and room temperature for 2 h to leave
amine groups at the surface of the CNT-PGF substrate (Fig. 1D).
Samples were rinsed with a series of ethanol solutions and distilled
water (DW) to remove excess chemical byproducts, before being
sterilized first in 70% ethanol and then under UV irradiation for
further biological assays.

The aminated CNT-PGF substrate was then incorporated into
cylindrical nerve scaffolds. The scaffolding of the microfiber bun-
dles was carried out as a two-step process: first wrapping them
around a biopolymer nanofiber mat (Fig. 1E) and then placing it
within a porous biopolymer cylindrical tube (Fig. 1F). First, a PLDLA
electrospun nanofiber mat was prepared. PLDLA solution in chloro-
form (2.5 wt.%) was electrospun onto a high-speed rotating metal
collector to gather up aligned PLDLA nanofibers. The electrospin-
ning conditions were a 1.5kV cm™' electric field strength and a
0.1 ml min™! injection speed. The microfiber bundles were placed
onto the nanofiber mat, which was then rolled up to wrap (three
times) the bundles completely. The number of microfibers
wrapped within the nanofiber mat was determined to be
900 + 36. The nanofiber-wrapped microfiber bundles were then
placed within a PLDLA cylindrical tube. The PLDLA tube was pro-
duced by the method described elsewhere with a slight modifica-
tion [28]. In brief, 0.2g of PLDLA and 1g of ionic liquid
([bmim]BF,) were dissolved in 10 ml of dichloromethane, in which
a glass tube (0.8 mm diameter) was immersed to coat it with a thin
layer (~200 pm) of the PLDLA-ionic liquid. After completely dry-
ing, the ionic liquid was selectively dissolved in DW by gentle
washing, to leave a porous structured PLDLA cylindrical tube.

2.2. Characterization of CNT-PGFs and scaffolds

The identification and quantitative analysis of chemical reaction
were accomplished with a zeta potential analyzer (Zetasizer Nano
ZS, Malvern Instruments Ltd., Worcestershire, UK), Fourier trans-
form infrared spectrometry (Varian 640-IR, Varian, Palo Alto, CA,
USA), X-ray photoelectron spectroscopy (XPS; AES-XPS ESCA 2000,
Thermo Fisher Scientific Inc., Waltham, MA, USA) and thermogravi-
metric analysis (TGA; TGA N-1500, Scinco, Seoul, Korea). The mor-
phology of the samples was examined by field emission scanning
electron microscopy (FESEM; MIRA II LMH microscope, Tescan,
Czech Republic) and transmission electron microscopy (TEM; JEM
2000EXII, Jeol Ltd., Tokyo, Japan). The water wetting property of
the samples was examined by contact angle analysis (Phoenix 300,
Surface Electro Optics, Gyunggido, Korea). The electrical conductiv-
ity was analyzed using a high-resistance measurement (Agilent
4339B/4349B, Agilent Technologies, Inc., Santa Clara, CA, USA).

The physical and chemical stability of the CNTs linked to the
PGF surface were examined. For the physical stability, microfiber
bundles were treated with ultrasound for 10 min, after which the
CNTs’ existence and status on the surface were observed by FESEM.
The chemical stability was observed by soaking the sample in DW
for periods of up to 28 days. At predetermined times, the sample
was taken out and the surface status was examined by FESEM.

2.3. In vitro study of CNT-PGFs using PC12 and DRG cells

For the in vitro study, aligned microfiber bundles (either PGFs
or CNT-PGFs) were used by fixing the ends of bundles with PCL
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Fig. 1. Schematic presentation of PGFs interfaced with CNTs and a CNT-interfaced PGF scaffold. The aligned PGF bundle interfaced with CNTs for neurite outgrowth (A) was
processed from (B) to (D). PGFs were positively charged with amine residues (B), followed by amide bond formation between the primary aminated PGF and the carboxyl
groups of the CNT (C), then functionalized with amine groups via the carbodiimide crosslinking reaction (D). For in vivo study, the CNT-PGF substrate was wrapped around a
PLDLA electrospun nanofiber mat (E), then placed within a porous PLDLA cylindrical tube (F).

to a length and a width of about 18 mm for a 12-well cell culture
system. First, the effects of the any extracts from the CNT-PGF
bundles on the cell viability were examined using the PC12 cell
line. For this, the microfiber bundles were incubated in the culture
medium, which consisted of a-modified Eagle’s medium (Welgene
Inc., Daegu, Korea), 10% fetal bovine serum (FBS; Gibco®, Life Tech-
nologies Inc., Carlsbad, CA, USA), 100U ml™! penicillin and
100 pg ml~! streptomycin (Gibco®), for either 7 or 14 days at
37 °C. After each period, the extract medium was mixed with the
normal culture medium at varying ratios (extract:culture med-
ium =0:100, 1:99, 10:90 and 30:70) to prepare graded concentra-
tions of the extracts. The PC12 cell line (American Type Culture
Collection, Manassas, VA, USA), derived from a pheochromocytoma
of the rat adrenal medulla, were grown in normal culture medium
at 37 °C in a humidified atmosphere of 5% CO,. Cells were cultured
for 3 days in culture media containing 7 or 14 day dissolved solu-
tion. The cell viability was analyzed by means of a Cell Counting
Kit-8 (CCK-8; Dojindo Laboratories, Kumamoto, Japan). After reac-
tion for 3 h, the colored formazan product was read at an absor-
bance 450 nm using a microplate absorbance reader (Bio-Rad
Laboratories, Hercules, CA, USA). The test was carried out in
triplicate.

Next, we tested the effects of CNTs on the neurite outgrowth of
primary neurons using dorsal root ganglion (DRG) cells. Thoracic-
and lumbar-spine-level DRG neurons from 6 week old Sprague-
Dawley (SD) rats were excised, collected in Hanks’ balanced salt
solution (Gibco®) and prepared for primary culturing as previously
described [15]. CNT-PGFs of approximately 20 mm length were
arranged longitudinally on coverslips, both ends attached using
liquid PCL and plated onto culture dishes. PGFs without CNTs
and coverslips without PGFs were used as a dual control. The cov-
erslips were then coated with 20 pug ml™' poly-p-lysine (Sigma-
Aldrich) and 10 pg ml™! laminin (Sigma-Aldrich), and placed in
the wells of a 12-well plate.

DRG neurons were mixed in culture medium with 10% FBS
(Invitrogen, Life Technologies Inc.) and 1% penicillin/streptomycin,
placed in a 37 °C/5% CO, incubator and harvested after 4 h. Thus
maintained DRG neurons (approximately 3000 cells per well of
the 12-well plate) were directly seeded onto each sample (PGFs,
CNT-PGFs and culture dish) and then cultured for periods of up
to 3 days, with refreshment of medium every 24 h. At each culture
period (1, 2 and 3 days), the slides (n = 4 in each group on each day)

were fixed with 4% paraformaldehyde in 0.12 M phosphate-buf-
fered saline (PBS) and stained. The primary antibody for axons
was mouse SMI312 monoclonal antibody (1:400, Abcam, Cam-
bridge, MA, USA) and the secondary antibody was fluorescein iso-
thiocyanate (FITC)-conjugated goat anti-mouse IgG (1:200, Jackson
ImmunoResearch Labs, Inc.,, West Grove, PA, USA). The stained
slides were treated with PBS containing 4’-6-diamidino-2-phenyl-
indole (DAPI) and coverslipped with Vectashield® (Vector Labora-
tories, Burlingame, CA, USA). For the purposes of a quantitative
analysis, the 15 longest SMI312-positive neurites were selected
under confocal microscopy. The maximal neurite length was mea-
sured using NIH Image] software (National Institute of Health,
Bethesda, MD, USA) and Neuron] plugins [29], and averaged
according to the groups and periods. Fifteen SMI312-positive
DRG neurons in each group and period were randomly selected,
and the number of branch points which arose from each neuronal
cell body was manually counted and averaged. The number of DRG
neurons on each slide was also counted, and a total of three slides
per group were used for analysis. All of the measurements were
performed by one observer blinded to the group and time period.

2.4. In vivo study in transected rat sciatic nerve model

For the in vivo tests, the CNT-PGF 3-D scaffolds wrapped with
PLDLA nanofiber and placed into PLDLA cylindrical tube (as
described in Section 2.1) were used. The scaffold dimensions were
an inner diameter of 0.8 mm, an outer diameter of 1.0 mm and a
length of 12 mm. The CNT-free PGF scaffold, prepared by the same
method as the CNT-PGF scaffold, was used as the comparison
group.

Adult female SD rats (age: 12 weeks; weight: 230-250 g) were
employed, strictly observing all animal care and surgical proce-
dures as approved by the Institutional Animal Care and Use Com-
mittee of Dankook University (DKU-11-028). During the
experiment, the animals were housed individually at a constant
temperature (23-25 °C) and humidity (45-50%) without restric-
tion of food and water. Surgery was performed under isoflurane
(Forane, Choongwae Pharma, Seoul, Korea). After the skin and sub-
cutaneous layers around the left hip joint had been incised, the left
sciatic nerve was exposed. The sciatic nerve was transected com-
pletely from a point 5 mm distal from the left hip joint and
removed, leaving a 10 mm gap. Just after injury, both ends of the
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transected sciatic nerve were inserted about 1 mm into a 12 mm
long PGF or CNT-PGF scaffold, which was then tied to the epineural
sheath using 10-0 Nylon. For a positive control, an autologous
nerve graft was performed using a 10 mm long transected sciatic
nerve following a 180° rotation and reattached with 10-0 Nylon.
The muscle, subcutaneous layers and overlying skin were closed
with silk. The CNT-PGF- and PGF-implanted rats were sacrificed
16 weeks after implantation. A total of40 rats (14 autologous
nerve-grafted rats, 14 CNT-PGF-implanted rats and 12 PGF-
implanted rats) were sacrificed throughout the study.

2.5. Immunohistochemistry and histology of sciatic nerves and muscles

For the purposes of a histological analysis, all of the animals
were deeply anesthetized, transcardially perfused with saline,
and fixed with 4% paraformaldehyde. The injured sciatic nerve
was removed, postfixed with 4% paraformaldehyde and immersed
for 3 days in 30% sucrose solution. The tissues were embedded in
M1 compound (Thermo Fisher Scientific Inc.) and sectioned sagit-
tally or axially on a cryostat at 16 pum. Sections were treated with
0.2% Triton X-100 in 2% BSA/PBS solution and blocked with 10%
normal serum. Primary antibodies (mouse SMI312 monoclonal
antibody, 1:1000, Covance, Princeton, NJ, USA; rabbit S-100
polyclonal antibody, 1:1000, Dako Cytomation, Carpinteria, CA,
USA) were incubated overnight at 4 °C and secondary antibodies
(FITC-conjugated goat anti-mouse IgG, 1:200, and Rhodamine-
conjugated goat anti-rabbit IgG, 1:200, both from Jackson Immu-
noResearch Labs Inc.) were incubated for 2 h at room temperature.
Sections were treated with PBS containing DAPI, coverslipped with
Vectashield® (Vector Laboratories) and observed by confocal
microscopy (Carl Zeiss Inc., Oberkochen, Germany). Whole
SMI312-positive axons at the distal stump (1 mm from distal end
of scaffold) were counted in the transverse sections; counting
was carried out using NIH Image] software and combined fully
and semi-automated methods were used for nerve morphometry,
as described previously [30].

After completion of the electrophysiological evaluation, the gas-
trocnemius muscles of the injured site were dissected, frozen in
liquid-nitrogen-cooled isopentane and cryosectioned at 10 pm.
Hematoxylin and eosin (H&E) staining was performed on the gas-
trocnemius muscles in the autologous-nerve-grafted group and the
CNT-PGF and PGF scaffold-implanted groups at 16 weeks (one
slide per rat and six rats in each group). Slides were dehydrated,
cleared, mounted in DPX (Sigma-Aldrich), and observed under a
microscope (Nikon, Tokyo, Japan).

Sections from the belly of the gastrocnemius muscles of the
injured site were ATPase stained to determine the muscle fiber type
in the autologous-nerve-grafted group and the CNT-PGF and PGF
scaffold-implanted groups at 16 weeks (one slide per rat and six rats
in each group). The sections were prepared for staining by preincu-
bation in barbital acetate buffer (pH 4.53), followed by incubation in
ATP solution. They were then washed with 1% calcium chloride solu-
tion, incubated with 2% cobalt chloride and washed in 0.005 M
sodium barbital. For visualization, sections were immersed in 2%
ammonium sulfide solution followed by rinsing in DW, dehydrated
in an ethanol series, cleared with xylene, mounted in DPX and
observed under a microscope. Stained muscle sections representing
four different rats within the same group were selected for analysis,
the cross-sectional area of the gastrocnemius muscle fibers was
measured using NIH Image] software, and combined fully and
semi-automated methods were used for nerve morphometry [30].

2.6. Electrophysiological assessments

Motor nerve conduction studies were performed for all of the
experimental and control groups at 16 weeks post-implantation.

The animals were anaesthetized with isoflurane (Forane, Choongwae
Pharma), and placed on a warmed heating pad. The surrounding
adipose and muscle tissues were carefully removed to expose the
sciatic nerve. Electrical stimulation was applied by means of elec-
trodes proximal to the nerve graft or scaffold. The stimulation
mode was set to pulse (5 mA stimulus intensity, 1 Hz frequency,
1 ms duration); the active surface electrode was placed in the gas-
trocnemius muscle belly of the injured site, the reference surface
electrode near the distal tendon and the ground electrode in the
tail. Amplification and recording were accomplished using a data
acquisition system (Powerlab 8/35, AD Instruments Inc., Colorado
Springs, CO, USA); specifically, the signals were recorded using
Labchart 7 software (AD Instruments) connected to a Bio-amplifier
(Bioamp, AD Instruments). A notch filter incorporating a band-pass
filter set to 1-5000 Hz was utilized to remove 60 Hz of noise from
the signals. The peak-to-peak amplitude and onset latency of
the compound muscle action potentials (CMAPs) were measured
for the autologous-nerve-grafted group and the CNT-PGF and
PGF scaffold-implanted groups according to the intensity of
stimulation.

2.7. Statistics

Statistical analyses were performed using PASW Statistics 18
(SPSS Inc., Chicago, IL, USA). The Kolmogorov-Smirnov test was
conducted to reveal the normal distribution of all quantitative data
from the biomaterial properties and the in vitro and in vivo studies.
The Kruskal-Wallis test was performed to compare the contact
angles of phosphate glass disc (PGD) and functionalized CNT-
PGD, the PC12 cell viability cultured in 1%, 10% and 30% PGF and
carboxylated or aminated CNT-PGF, and the number of survived
DRG neurons cultured on plain dish, PGF and CNT-PGF. Bonferroni
correction was also used to pair groups after the Kruskal-Wallis
test. One-way analysis of variance (ANOVA) with the Duncan post
hoc test was conducted to compare the conductivity measure-
ments of PGD and functionalized CNT-PGD, and the maximal neu-
rite length and branch numbers of DRG neurons cultured on plain
dish, PGF and CNT-PGF. The Mann-Whitney U-test was performed
to compare the quantitative results of axonal and muscle histology
and electrophysiology of the PGF and PGF-CNT scaffold-implanted
groups. All error bars in figures related to the standard error of the
mean, and statistical significance was set at p < 0.05.

3. Results
3.1. Fabrication of CNT-PGF nerve scaffolds

The CNTs used in this study were carboxylated by acid treat-
ment and their properties are presented as Supplementary data
(Fig. S1). Unlike raw CNTs, which are not readily soluble in ethanol,
the carboxylated-CNTs showed excellent solubility, with the sol-
vent stability lasting for months (Fig. S1A). Zeta-potential mea-
surements revealed a highly negatively charged surface
(—43 mV), which was explained by the presence of a large number
of carboxylic groups (Fig. S1B). Fourier transform infrared spectros-
copy confirmed the development of carboxylic groups in the acid-
treated CNTs (Fig. S1C) and the XPS results showed a higher oxygen
peak related to the carboxylic group (Fig. S1D). TGA showed a dif-
ference in thermal degradation behavior between the two groups,
with more weight loss in the carboxylated CNTs, suggesting that
thermal weight loss occurred in the carboxylic groups (Fig. S1E).
A TEM image of the CNTs showed that acid treatment decreased
the wall thickness of the CNTs slightly (Fig. S1F). The results clearly
show that the multi-walled CNTs used in this study were carboxyl-
ated well and highly negatively charged.
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Using the carboxylated CNTs, the surface of the PGFs was chan-
ged through a series of chemical reactions, and the CNT-PGF bun-
dles were then developed into 3-D nerve scaffolds (as illustrated in
Fig. 1). Fig. 2 shows scanning electron microscopy (SEM) images of
the samples (CNT-PGF and 3-D scaffold) during the process. After
the melt-spinning of glass powder, PGFs were easily generated
aligned in a single direction and were very uniform in size
(Fig. 2A). The average size of the PGFs (n=100), as analyzed by
SEM and calculated by the Image] image analysis program, was
22.32 +3.73 um (range: 12.17-29.00 um). This is within the opti-
mal range for neuronal cell attachment and culturing on our phos-
phate glass poles, given that the reported diameters of the
neuronal cell bodies are 5-20 and 5-50 um for PC12 cells and
DRG neuronal cells, respectively [31,32]. We optimized the condi-
tions for the tethering of carboxylated CNTs on PGF bundles by
varying the concentration and frequencies of APTES treatment
and the concentration of the CNT solution. A homogeneous mono-
layer-coated surface could be achieved on the CNTs on the PGFs
(Fig. 2B) by first using a low-concentration APTES solution while
enabling the PGF-amination reaction to occur three times, then
by using a diluted and better-dispersed CNT solution while
enabling the amide reaction to occur five times. A highly non-
homogeneous CNT coating is achieved when using a thick CNT
solution (Fig. 2C), and this also happens when the APTES treatment
is not properly carried out. The CNT-interfaced PGFs were subse-
quently aminated via the carbodiimide reaction using a diamine
solution. The amination process was confirmed to preserve the
morphology of the CNTs interfaced with the PGFs well. Next, the
CNT-PGF bundles were constructed into a 3-D scaffold, first by
rolling onto a PLDLA aligned nanofiber and then placing it within
a PLDLA microporous tubular conduit. The morphology of the 3-
D nerve scaffold containing the microfibers depicted in Fig. 2D
shows the functional arrangement of each component, i.e. the
microfibers packed inside, the thin wrapping sheet and the slightly
thicker outermost layer. A higher magnification of the inner thin
sheet revealed the nanofibrous morphology aligned parallel to
the microfibers (Fig. 2E). Also, the outer shell presented a highly
microporous with pore sizes of 50-100 mm (Fig. 2F).

Al

Size Distribution

Size [um]

3.2. Physicochemical properties of the CNT-PGF

The physicochemical properties of samples underwent each
chemical modification step were then in-depth analyzed. The
chemical analyses were particularly carried out using a disc type
of the same phosphate glass composition. First, the XPS signals
showed energy peaks of atoms present on the outermost surface
(Fig. 3A). The chemical shift from 284.63 to 285.07 eV, for a differ-
ence of 0.17-0.44 eV in the carbon atom binding energy of the C1s,
is associated with CNT modification, in contrast to CNT-free glass
substrate. The XPS spectra of the CNT-modified phosphate glass
reflected the highest carbon atom (74.90%) and oxygen atom
(18.39%) contents. It was obvious that this was due to the sp? car-
bon atoms of the CNT molecules covalently bound to the glass. The
amination of CNT-glass showed an increased percentage of nitro-
gen (5.68%). This suggests that the open-end structures of the
CNT molecules and the functional groups bonded to the nanotubes’
end loops on the discs. Fig. 3B demonstrates the surface wettability
changed according to the surface chemistry. The phosphate glass
(PGD) showed the highest hydrophilicity due to a bunch of ionic
groups on the surface, whereas the APTES-treated glass (PGD-
APTES) became hydrophobic due to the creation of silane groups.
The CNT-tethering increased the hydrophilicity (PGD-MWCNT-
COOH) and the subsequent amination (PGD-MWCNT-NH;)
increased further (p < 0.05 by Kruskal-Wallis test). As one of the
distinct advantages of CNTs-interfacing is the electrical conductiv-
ity, we calculated the value by measuring the resistance of each
sample, as shown in Fig. 3C. The conductivity of CNT-free phos-
phate glass (PGD) and APTES-treated glass (PGD-APTES) samples
ranged approximately 10-'>Scm™, like insulators. However, the
CNTs interfacing substantially increased the conductivity level to
approximately 107°-10"°Scm™, and the post-amination also
showed a similar level.

Next, the stability of CNTs tethered onto PGF was examined by
means of either ultrasound sonication for 10 min or soaking in
water for up to 28 days, as shown in Fig. 4. The SEM morphology
of microfibers after 10 min of ultrasonic treatment showed little
change in the CNT layered morphology from that before sonication.

Fig. 2. SEM morphology analysis of CNT-interfaced PGFs (CNT-PGFs) and a scaffold for in vivo study. Uniformly aligned PGFs (A, left) and the distribution of the diameter of
randomly selected 100 PGFs (A, right). Optimized CNT-PGFs showed a homogeneous monolayer-coated surface (B), and a non-homogeneous CNT coating was achieved when
thick CNT solution was used (C). (D-F) SEM image showing the structure of a 3-D CNT-interfaced PGF scaffold: (D) the whole cross-sectional structure (left), with magnified
images of the periphery of the scaffold (right); (E) magnified surface (aligned fiber structure) of inner PLDLA mat; and (F) magnified surface (porous structure) of the outer

PLDLA tube.
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Fig. 3. Chemical properties of PGD, APTES-treated PGD (PGD-APTES) and CNT-interfaced PGD with carboxylation (PGD-MWCNT-COOH) or amination (PGD-MWCNT-NH,).
(A) XPS analysis of surfaces of PGD or CNT-interfaced discs. (B) Contact angle and (C) conductivity measurement of samples. *p < 0.05 compared with PGD by the Kruskal-
Wallis test with Bonferroni correction. The error bar relates to the standard error of the mean.

Moreover, the SEM image of microfibers during water immersion
at varying period evidenced the CNTs were soundly present on
the glass surface with a similar morphology to that before water
immersion. Interestingly PGFs did not show any significant surface
erosion and thus resultant CNTs detachment.

3.3. In vitro study of CNT-PGFs in PC12 and DRG cells

PC12 cells were cultured for 3 days in culture media containing
7-day or 14-day PGF or CNT-PGF dissolved solution with different
concentration. According to the results, PGF or CNT-PGF dissolved
solution showed no cytotoxicity, and PC12 cells even showed bet-
ter cell viability in the carboxylated or aminated CNT-interfaced
PGF soaking solution than in any of the PGF dilutions. PC12 cell via-
bility was significantly improved as the dilution percentage
increased from 1% to 30% in 7-day dissolved solution (Fig. 5A),

and also had a tendency to be increased with the concentration
in 14-day dissolved solution (Fig. 5B).

Based on this cellular toxicity study, we next assessed neurite
outgrowth behaviors of primary neurons on the CNT-PGFs. Pri-
mary cultured DRGs extracted from 6-week-old SD rats were
placed either on CNT-PGFs, on PGFs without CNTs, or in a plain
dish, and cultured for 3 days. Whilst neurites outgrew randomly
in the control dish, neurites extended directionally on the microfi-
ber substrates, and the extension was much higher on the CNT-
PGFs than on the PGFs (Fig. 5C). Analyses of the neurite outgrowth
gave significant difference between groups. The maximal neurite
length was significantly higher on the CNT-PGFs than on the PGFs
or those cultured in the plain dish (Fig. 5D); further, the branch
numbers per DRG did not differ between the CNT-PGFs and the
PGFs (Fig. 5E), and the number of attached DRGs at 3 days was
greater on the CNT-PGFs than on the PGFs (Fig. 5F).
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3.4. In vivo study of CNT-PGFs in peripheral nerve injury

The produced 3-D scaffolds (CNT-PGFs and CNT-free PGFs)
were implanted into transected stumps to fill a 10 mm gap after
complete transection of the sciatic nerve of 12-week-old SD rats
(Fig. 6A). We found that SMI312-positive axons crossing the
implanted scaffold and S100-positive Schwann cells along the
axons was more in CNT-PGF group than in PGF group (Fig. S2A
and B) and the number of SMI312-positive axons at the distal
stump of the CNT-PGF group was significantly higher than that

in the PGF group (Figs. 6B, C and 7A). The cross-sectional area of
the gastrocnemius muscle was significantly larger in the CNT-
PGF group than in the PGF group (Figs. 6D and 7B). Following
CNT-PGF scaffold implantation, the mean value of the proportion
of the type I fiber of the gastrocnemius muscle was decreased
and that of the type Ila fiber was increased, more so than with
the PGF scaffold (Figs. 6E and 7C), but without statistical difference.
The onset to the peak amplitude of the CMAPs in gastrocnemius
muscle also was larger in the CNT-PGF group than in the PGF
group (Figs. 6F and 7D).
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Fig. 6. In vivo experiments and findings of functionalized CNT-interfaced PGF scaffolds. (A) Implantation of CNT-free PGF (PGF) or CNT-interfaced PGF (CNT-PGF) scaffold
between the proximal and distal stumps of a completely transected rat sciatic nerve. Representative immunohistochemical images of axons (green) in the transverse section
at the distal stump (11 mm from the proximal stump end, B) and axons (SMI312, green), and Schwann cells (S100, red) in the sagittal section at the border between the
scaffold and the distal stump (C) of PGF scaffold-implanted sciatic nerve (PGF) or CNT-PGF scaffold-implanted sciatic nerve (CNT-PGF) at 16 weeks post-implantation (yellow
scale bar =500 um, white scale bar =200 pum). (D) Representative images of H&E-stained gastrocnemius muscle following PGF scaffold (PGF) or CNT-PGF scaffold
implantation (CNT-PGF) at 16 weeks post-implantation (black scale bar = 50 um). (E) Representative images of ATPase stained muscle (PGF and CNT-PGF) and examples of
muscle fiber types (right, I = type I, lia = type Ila, [ib = type IIb, black scale bar = 50 um). (F) Representative images of CMAP following PGF scaffold (PGF) or CNT-PGF scaffold

implantation (CNT-PGF).

4. Discussion

In this study, we demonstrated for the first time the in vivo func-
tions of CNT-interfaced implants for the nerve regeneration in rat
sciatic model. For this, we designed a novel CNT-tethered nerve con-
duit based on the phosphate glass microfibers combined with poly-
meric scaffolds. In particular, CNTs linked to a phosphate glass fiber
were functionalized by a series of reactions involving carboxylation
and subsequent amination, and the amination was aimed to provide
the outermost CNTs surface with amino groups that are considered
amore favorable surface, at least when compared with carboxylated
surface, for neuronal cell behaviors including cell adhesion, neuro-
nal differentiation of neural stem cells, and in vivo recovery after
ischemic stroke [16,22,23,33]. Among other surface properties that
may be impacted by the CNT modification, including increased
(nano) roughness, altered chemistry, and hardness, the conductivity
is believed to be the most fascinating aspect of the conduits for neu-
ral applications. In fact, whilst free phosphate glass samples showed
a conductivity value of ~1073Scm™, like insulators, the CNT-
interfaced samples substantially increased the conductivity to a
range of ~107°-10"®Scm™'. This apparent result suggests that
the monolayer coverage of CNTs provides the phosphate glass sub-
strate more electrically conductive surface that possibly alters and
even stimulates neuronal cell responses.

We subsequently 3-D structured the CNTs-interface phosphate
glass fiber for implantable nerve conduit by bundling the
CNTs-phosphate glass fibers, followed by wrapping onto a PLDLA
nanofiber and then embedding within a porous PLDLA tube.
Consequently, the CNTs-glass fibers were stably positioned within
a tubular structure, where the porous tubes are freely to interact
with outer environments, beneficial for mass transport and blood
circulation, which enabling the CNTs-glass fibers to function neural
guidance effectively. In fact, when free-CNTs (not tethered onto a
substrate) were directly treated to neural cells, many studies have
reported their cytotoxicity and genotoxicity [34-38]. Therefore,
the surface-tethered CNTs are considered to be much safer as they
avoid rapid and direct cellular internalization while providing

electrical stimuli to cells in the intercellular and/or cell-matrix
interfacing reactions. As to the stability of CNTs onto the phosphate
glass fiber, we confirmed the currently implemented CNTs,
covalently linked to a phosphate glass substrate, showed to be very
stable physically and chemically as they did not dissolve out from
the surface to the in vitro test period (for a month). Furthermore,
in vivo findings did not reveal any toxic responses related with
the CNTs. Phosphate-based glass is usually soluble, but in this
study, we used P,05-CaO-Na,0-Fe,03; with the smallest sodium
(5%) and the highest iron (5%) composition which has the least sol-
ubility. This fact alleviates any possible concerns on the premature
release of CNTs and resultant cytotoxicity, rather, allows for antic-
ipating the CNT-PGF system as a biocompatible nerve guiding
matrix.

The CNTs-interfaced phosphate glass fiber scaffolds showed
good viability of PC12 cells in the indirect dilution study (Fig. 5A
and B). In particular, the improved PC12 cell viability with the dil-
uents demonstrated the possible role of ionic extracts from the
glass fibers played in stimulating cell metabolism. In fact, the phos-
phate glass fiber composition used herein has previously shown to
release sufficient amount of ions such as calcium and phosphate
that is favorable for cell viability and blood vessel formation
[39,40].

Schwann cell is important to support axonal outgrowth and
remyelination, and CNTs may affect the survival and proliferation
of Schwann cells following peripheral nerve injury [41-43]. In pre-
vious in vitro studies, single-walled CNTs in three dimensional
hydrogel has no toxicity on Schwann cells [41], and multi-walled
CNT containing collagen/PCL fibers might support Schwann cell
adhesion [42]. In vivo condition, single-walled CNTs-based silk/
fibronectin nerve conduits enhanced S-100 expression of Schwann
cells [43]. We found that Schwann cells along CNT-interfaced PGFs
were more than those on CNT-free PGFs in vivo study, but we need
to delineate the exact mechanisms of CNT-interfacing on the sur-
vival and proliferation of Schwann cells in the further study.

With regard to this ionic role on nerve cells, more in-depth stud-
ies will be needed in the future, which is considered an interesting



332 H.-S. Ahn et al./Acta Biomaterialia 13 (2015) 324-334
—
A 2 B E
3500
g 10000 5
x SN
© 9000 - [ © [
+ ® 3000 -
~N ®©
= 8000 | =
© 2500
| [
(% 7000 5
-
= 6000 § 2000 0AG
g S000 @ PGF
pd — 3 1500
1 = B CNT-PGF
(@)
3000 - 1000
2000 -
500
1000 -
0 0
Treatment Group Treatment Group
O —
C = o7 D > 2
© e
. =~ 18
p 1
= 08 3 [
© > 16
— et
q) F—
o 054 g. 14 -
o 42
X
o 8 ®
Q.
0.3 ..9 8
©
0.2 @ 6
O 4
0.1
2 |
0 0
Type | Type lla Type llb Treatment Group

Fig. 7. Quantitative analyses of axonal and muscle histology and electrophysiology. (A) The number of SMI312-positive axons from the cross-sections at the distal stump
(11 mm from proximal stump end) and (B) the mean cross-sectional area of gastrocnemius muscle fibers in the autologous nerve graft control and the PGF and PGF-CNT
scaffold-implanted groups. (C) The ratio of each muscle type (types I, lla and IIb; bottom right) following autologous nerve graft control and PGF and CNT-PGF scaffold-
implanted groups. (D) The mean values of the onset to peak amplitude in the autologous nerve graft and the PGF and PGF-CNT scaffold-implanted groups (bottom). *p < 0.05
between PGF and CNT-PGF scaffold-implanted groups by the Mann-Whitney U-test. The error bar relates to the standard error of the mean.

area of study to develop novel scaffolds for neural regeneration As
discussed, the ionic release would be possible from the phosphate
glass fiber over a long period, which however, is not considered to
be an enough level to result in the dissolution of CNTs from the sur-
face. Thus the CNT-interfaced outermost of the phosphate glass
fiber implant would be stable at least to the test period, facilitating
beneficial cellular interactions. In fact, in the direct culture of DRG
cells, the glass fibers demonstrated nerve guidance role, with signif-
icant decrease in the neurite branches. Previously, we also found
that DRG neurites grew actively along PGFs, which provided phys-
ical guidance and offered excellent cellular compatibility [15]. More
than this guidance role, the CNT-interfaced on the glass fiber signif-
icantly enhanced the cell adhesion level and neurite outgrowth
length. The exact mechanism of the effect of CNTs on neuronal
growth is yet to be disclosed [24]. It is first thought that the CNTs
provided a nanotopological cue to improve the neuronal cell adhe-
sion. CNTs-substrate has been shown to stimulate cell adhesion
related gene expression in vitro and the subsequent cell prolifera-
tion [44]. Some researchers have suggested that CNTs activate

extracellular signal-regulated kinase (ERK) signaling and phospho-
lipase C signaling pathways [33,45]. The high electrical conductivity
of CNTs might also affect the neuronal regeneration through the
modification of ionic transport across the plasma membrane, by
which the ECM protein conformation and synthesis is changed
[46], and the neurotrophic factor release from neuronal cells is
stimulated [47]. Therefore, the integration of CNTs with the phos-
phate glass fiber is thought to have a synergistic effect on the
DRG functions in terms of providing physical guidance as well as
stimulating cell adhesion and neurite outgrowth. The physical,
chemical, topological and electrical properties provided by the
CNTs-phosphate glass are thus considered promising cues for neu-
ronal functions and possible nerve regeneration.

We demonstrated for the first time the in vivo performance of
the CNT-interfaced scaffolds using a completely transected periph-
eral nerve injury model in rats. While most studies on CNT-based
substrates have focused on the in vitro cell behaviors, little is
known about the in vivo functions of CNT scaffolds. In fact, only
a few recent studies have reported striking findings on the effective
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roles of CNTs in the in vivo central nervous systems including brain
stroke and spinal cord injury models [16,17]. Aminated CNTs-solu-
tion directly injected to a rat brain in stroke model significantly
enhanced neural protection and functional restoration [16]. CNTs
functionalized with polyethylene glycol, directly injected to the
injured spinal cord of rat, effectively reduced lesion volume,
increased the number of neurofilaments and functional restoration
[17]. These pioneering in vivo studies on CNTs, however, showed
the function of CNTs added directly to the injured sites in solution
form, instead of reporting the role of CNTs as scaffolds or sub-
strates. Therefore, this study is, to the best of our knowledge, is
the first in vivo finding of the performance of CNT-based scaffolds.
Here we tested the function of CNTs-interfaced glass fiber in the
peripheral nerve injury model, which is considered common clini-
cally encountered injury, thus requiring significant clinical needs,
and the outcome can also be applied in parallel to the central ner-
vous system in the future study. In previous studies, the scaffolds
containing aligned or structured intraluminal guidance enhanced
peripheral and central nerve regeneration [48-50]; we also
observed the role of phosphate glass fiber in physically guiding
the nerve regeneration. More than this, we found some clear evi-
dences that the CNTs-interfacing functioned better as the intralu-
minal structured nerve conduit. The number of lesion-crossing
axons was significantly increased by the CNTs-interfacing. In fact,
phosphate glass fiber conduits inside a collagen scaffold have also
shown very limited effect on intraluminal structure during the
early stage of up to 8 weeks, with no further functional restoration
at 12 weeks [15]. The CNT-interfaced phosphate glass fiber scaf-
fold, however, prolonged the effects of axonal regeneration up to
16 weeks. CNTs can also play roles in drug delivery systems and
stem cell differentiation. A CNT-mediated drug delivery system
was shown to effectively transport siRNA or other proteins to the
target tissue and to achieve functional restoration following brain
lesion [51], and, in combination with stem cell transplantation,
also improved functional recovery and enhanced stem cell differ-
entiation [52].

Furthermore, we found that the CNT-interfaced PGF scaffold
was effective in restoring motor functions electrophysiologically.
Motor nerve conduction study showed that CMAP was significantly
higher at the CNT interface. This indicates that scaffold-crossing
axons were successfully reinnervated into the gastrocnemius mus-
cles and that the muscle was functionally improved as a result of
the CNT interfacing. The proportion of slow to fast muscle fiber
types usually changes following denervation and reinnervation,
with more fast fibers [53], and we found that this tendency was
enhanced in rats receiving a CNT-interfaced scaffold. However,
there was no clear evidence of any change in the muscle fiber types
of reinnervated gastrocnemius muscles following complete tran-
section of the sciatic nerve, and this result was not statistically dif-
ferent from those rats receiving the PGF scaffold or those receiving
autologous nerve.

Although we clearly observed the effectiveness of CNT interfac-
ing in peripheral nerve regeneration, the phosphate glass fiber con-
duit used herein is not considered to provide any better conditions
to those in the autologous nerve graft, as deduced from the series
of in vivo results. This is due primarily to the limitations of the
morphological and physicochemical properties of the phosphate
glass fiber bundles. Firstly, although the phosphate glass fibers
were developed to have an average diameter of 20-30 pum, the
interspacing between the fibers appeared to be somewhat smaller
than the optimal spacing for neuronal growth. Secondly, the elas-
ticity of the glass fibers was intrinsically higher than the much
softer nerve tissues, and this may not provide the best conditions
for neuronal development. To this end, further study will be
needed to develop nerve conduits with better morphological and
elastic properties, with which the effects of CNTs-interfacing are

envisaged to be synergized. Furthermore, as the CNTs interfaced
at the edges of the nerve conduit have the potential to carry ther-
apeutic molecules [54,55], including neurotrophic factors and neu-
roprotective/anti-inflammatory drugs, combining this drug
delivery strategy with the CNT-based nerve conduits should
improve the capacity to regenerate nerve tissues, possibly to the
status of an autologous nerve graft.

5. Conclusions

Carbon nanotubes were successfully interfaced on phosphate
glass fibers for nerve guidance and then implemented into a 3-D
scaffold which possessed physicochemical integrity with good cell
viability and neuronal interactions. These first in vivo findings of
carbon nanotube-interfaced nerve implants assessed in a rat sciatic
injury model demonstrate the effective roles of the carbon nano-
tubes in the nerve regeneration process. This study is believed to
open up a new class of neural scaffolds based on a electrically con-
ductive nanomaterial - carbon nanotubes.
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Appendix A. Figures with essential colour discrimination

Certain figures in this article, particularly Figs. 1-7 are difficult
to interpret in black and white. The full colour images can be
found in the on-line version, at http://dx.doi.org/10.1016/j.actbio.
2014.11.026.
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Supplementary data associated with this article can be
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