29,566 research outputs found

    XQOWL: An Extension of XQuery for OWL Querying and Reasoning

    Full text link
    One of the main aims of the so-called Web of Data is to be able to handle heterogeneous resources where data can be expressed in either XML or RDF. The design of programming languages able to handle both XML and RDF data is a key target in this context. In this paper we present a framework called XQOWL that makes possible to handle XML and RDF/OWL data with XQuery. XQOWL can be considered as an extension of the XQuery language that connects XQuery with SPARQL and OWL reasoners. XQOWL embeds SPARQL queries (via Jena SPARQL engine) in XQuery and enables to make calls to OWL reasoners (HermiT, Pellet and FaCT++) from XQuery. It permits to combine queries against XML and RDF/OWL resources as well as to reason with RDF/OWL data. Therefore input data can be either XML or RDF/OWL and output data can be formatted in XML (also using RDF/OWL XML serialization).Comment: In Proceedings PROLE 2014, arXiv:1501.0169

    Lie groupoids and algebroids applied to the study of uniformity and homogeneity of material bodies

    Full text link
    A Lie groupoid, called \textit{material Lie groupoid}, is associated in a natural way to any elastic material. The corresponding Lie algebroid, called \textit{material algebroid}, is used to characterize the uniformity and the homogeneity properties of the material. The relation to previous results in terms of GG-structures is discussed in detail. An illustrative example is presented as an application of the theory

    Markoff-Rosenberger triples in arithmetic progression

    Get PDF
    We study the solutions of the Rosenberg--Markoff equation ax^2+by^2+cz^2 = dxyz (a generalization of the well--known Markoff equation). We specifically focus on looking for solutions in arithmetic progression that lie in the ring of integers of a number field. With the help of previous work by Alvanos and Poulakis, we give a complete decision algorithm, which allows us to prove finiteness results concerning these particular solutions. Finally, some extensive computations are presented regarding two particular cases: the generalized Markoff equation x^2+y^2+z^2 = dxyz over quadratic fields and the classic Markoff equation x^2+y^2+z^2 = 3xyz over an arbitrary number field.Comment: To appear in Journal of Symbolic Computatio

    Study of extremely reddened AGB stars in the Galactic bulge

    Full text link
    Context. Extremely reddened AGB stars lose mass at high rates of >10^-5 Msun/yr. This is the very last stage of AGB evolution, in which stars in the mass range 2.0--4.0 Msun (for solar metallicity) should have been converted to C stars already. The extremely reddened AGB stars in the Galactic bulge are however predominantly O-rich, implying that they might be either low-mass stars or stars at the upper end of the AGB mass range. Aims. To determine the mass range of the most reddened AGB stars in the Galactic bulge. Methods. Using Virtual Observatory tools, we constructed spectral energy distributions of a sample of 37 evolved stars in the Galactic bulge with extremely red IRAS colours. We fitted DUSTY models to the observational data to infer the bolometric fluxes. Applying individual corrections for interstellar extinction and adopting a common distance, we determined luminosities and mass-loss rates, and inferred the progenitor mass range from comparisons with AGB evolutionary models. Results. The observed spectral energy distributions are consistent with a classification as reddened AGB stars, except for two stars, which are proto-planetary nebula candidates. For the AGB stars, we found luminosities in the range 3000--30,000 Lsun and mass-loss rates 10^-5--3x10^-4 Msun/yr. The corresponding mass range is 1.1--6.0 Msun assuming solar metallicity. Conclusions. Contrary to the predictions of the evolutionary models, the luminosity distribution is continuous, with many O-rich AGB stars in the mass range in which they should have been converted into C stars already. We suspect that bulge AGB stars have higher than solar metallicity and therefore may avoid the conversion to C-rich. The presence of low-mass stars in the sample shows that their termination of the AGB evolution also occurs during a final phase of very high mass-loss rate, leading to optically thick circumstellar shells
    corecore