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MARKOFF–ROSENBERGER TRIPLES IN ARITHMETIC

PROGRESSION

ENRIQUE GONZÁLEZ–JIMÉNEZ AND JOSÉ M. TORNERO

Abstract. We study the solutions of the Rosenberg–Markoff equation ax2 +
by2 + cz2 = dxyz (a generalization of the well–known Markoff equation). We
specifically focus on looking for solutions in arithmetic progression that lie in
the ring of integers of a number field. With the help of previous work by
Alvanos and Poulakis, we give a complete decision algorithm, which allows
us to prove finiteness results concerning these particular solutions. Finally,
some extensive computations are presented regarding two particular cases:
the generalized Markoff equation x2+y2+z2 = dxyz over quadratic fields and
the classic Markoff equation x2 + y2 + z2 = 3xyz over an arbitrary number
field.

1. Variations on the Markoff equation

The Markoff equation is the Diophantine equation

x2 + y2 + z2 = 3xyz; x, y, z ∈ Z+;

which was studied first by Markoff in [12, 13]. In those papers, many interesting
properties related to the solutions of this equation were proved. Among other
things, Markoff showed there were infinitely many solutions (so–called Markoff

triples), gave a procedure to construct new solutions from old ones and proved
that, in fact, all integral solutions could be constructed from one fundamental so-

lution (1, 1, 1).
Since then, the Markoff equation and its solutions have been object of intense

research. Remarkably, Frobenius, while studying the Markoff equation over Gauss-
ian integers [8], noticed that, for a given ordered solution x ≤ y ≤ z, there was no
other ordered solution x′ ≤ y′ ≤ z. This conjecture, widely known as the Frobe-
nius unicity conjecture, has remained open since, although some important partial
results have been settled [2, 3, 5, 17, 6].

Our work started with the Markoff equation, but from a different point of view.
Rather than looking at the Frobenius conjecture, we decided to focus on looking
for Markoff triples with some extra structure: more precisely, those Markoff triples
which are in arithmetic progression (a.p. in what follows). However, in our study,
it became apparent that a generalization could be considered instead of the original
Markoff equation. From the many extended versions of the Markoff equation, two
have been by far the most studied in the literature.
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First, the Hurwitz (or Markoff–Hurwitz) equation [9], given by

x2
1 + x2

2 + ...+ x2
n = ax1x2...xn,

for which Hurwitz himself proved that all solutions could be constructed from a set
of easy mappings acting on a finite set of particular solutions.

The other succesfully studied generalization mentioned above, and the one who
will center much of our work, is the so–called Markoff–Rosenberger equation [16]:

ax2 + by2 + cz2 = dxyz.

Note that, in [16] (and in all subsequent articles concerning the Rosenberger
generalization) it is further required that a|d, b|d, c|d. This comes from Rosen-
berger’s original motivation, related to binary forms and Fuchsian groups. We will
not assume this for most of our work. As far as we know, there are no results in
the literature concerning the Markoff–Rosenberger equation with no conditions.

Let us consider then the equation

ax2 + by2 + cz2 = dxyz;

and assume we have a solution in a.p. which may be written in the form

x = X, y = X + Y, z = X + 2Y.

The equation then becomes

dX3 + 3dX2Y + 2dXY 2 − (a+ b+ c)X2 − (2b+ 4c)XY − (b + 4c)Y 2 = 0,

which is the equation of a cubic curve.
For what follows we will be taking homogeneous coordinates [X : Y : Z] and

considering a projective closure of our curve:

C : dX3 + 3dX2Y + 2dXY 2 − (a+ b+ c)X2Z − (2b+ 4c)XY Z − (b+ 4c)Y 2Z = 0,

which has, regardless of (a, b, c, d), a singular point (actually a node) at [0 : 0 : 1]
and three points at infinity: [0 : 1 : 0], [1 : −1 : 0] and [2 : −1 : 0]. Our aim was
finding all integral affine points of C.

This situation makes particularly simple the use of the INTEGRAL-POINTS algo-
rithm by Alvanos and Poulakis [1]. What makes this algorithm more remarkable is
the fact that it works for arbitrary number fields computing affine points whose co-
ordinates lie in the corresponding ring of integers. So, from Markoff integral triples
we had come to Markoff–Rosenberger triples which lie in the ring of integers of a
number field (always in a.p.).

In the third section we will develop an algorithm to compute all the Markoff–
Rosenberger triples over a number field K for fixed a, b, c, d ∈ OK , where OK

denotes the ring of integers of K. In particular, this algorithm allows us to give
a characterization of the values a, b, c, d such that there exists a non–trivial triple
in a.p. over OK (see Proposition 1). In the fourth section we show several finite-
ness results related to our problem. In the last section we will deal first with the
generalized Markoff equation, obtaining theoretical results over the rationals and
over imaginary quadratic fields. Moreover, we will include some extensive computa-
tions we have performed. These computations lead to a well–supported conjecture
over quadratic fields that might encourage future research in this area. Finally, we
will work with the classic Markoff equation but over arbitrary number fields with
bounded discriminant.
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But first, as the INTEGRAL-POINTS algorithm will be heavily used in what follows,
we will recall its steps, for the convenience of the reader. The proofs concerning
correctness and termination, as well as many other interesting features can be found
in the original reference [1].

2. An algorithmic short trip

Alvanos and Poulakis developed in [1] a very polished algorithm for the compu-
tation of the set of affine points on a genus zero curve whose coordinates can be
chosen to lie in a ring of algebraic integers. The version presented here is actually
the so–called (by the authors) INTEGRAL-POINTS3, where 3 refers to the number of
points at infinity. The precise algorithm goes as follows: fix a number field K and
we are given a curve, say C, defined by an affine equation

F (X,Y ) = 0, where F (X,Y ) ∈ K[X,Y ], deg(F ) = degY (F ) = N ;

verifying that C has exactly three smooth points at infinity {V1, V2, V3}. We want
to compute the affine points of C(OK).
Step 1. Compute the singular points of C and save those in C(OK).
Step 2. Find number fields M1, M2 such that K ⊂ Mi ⊂ K and polynomials

ai ∈ Mi[X,Y ], bi ∈ Mi[X ];

such that degY (ai) < N and

fi(X,Y ) := ai(X,Y )/bi(X) ∈ L(V3 − Vi),

where L(V3 − Vi) denotes the Riemann-Roch space of the divisor V3 − Vi.
Step 3. Compute αi, βi ∈ OMi

such that αifi and βi/fi are integral over OMi
[X ].

This step is carried out by an algorithm called DENOMINATORS which is presented
before in [1].
Step 4. Determine maximal sets Ai ⊂ OMi

of elements which are not pairwise
associate and such that its norm divides that of αiβi.
Step 5. Let M be the normal closure of the composition of M1 and M2. Solve
then, in M , the equation

c1f1 + c2f2 = 1.

Step 6. For every (k1, k2) ∈ A1 × A2 determine the (finite) solution set S(k1, k2)
of the unit equation

(

c1k1
α1

)

U1 +

(

c2k2
α2

)

U2 = 1.

The finiteness of this set of solutions is a well-known fact which goes back to Siegel
[18]. A more recent account on how to actually compute this set of solutions can
be found, for instance in [20] or the most efficient algorithm of Wildanger [21].
Step 7. For any (k1, k2) ∈ A1 ×A2 and (u1, u2) ∈ S(k1, k2) compute the resultant

R(k1,u1)(X) = ResY (F (X,Y ), α1a1(X,Y )− k1u1b1(X)) ,

and determine, the set S of solutions in OK for some R(k1,u1).
Step 8. For any v ∈ S compute the possible pairs (v, w) ∈ C(OK).
Step 9. The affine points of C(OK) are those computed in Step 1 and those
computed in Step 8.
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3. Integral points on curves at work

First we must put our curve in a suitable form for INTEGRAL-POINTS3, being
careful in order to preserve integral points. This can be achieved making the change

X 7−→ Y −X, Y 7−→ X, Z 7−→ Z;

which preserves not only integral projective points but also points at infinity (this
is important regarding the algorithm), hence obtaining

D : dY 3 − (a+ b+ c)Y 2Z − dX2Y + 2(a− c)XY Z − (a+ c)X2Z = 0.

Our new curve has still the same singular point [0 : 0 : 1] (a node) and three
points at infinity:

P1 = [1 : 1 : 0], P2 = [1 : −1 : 0], P3 = [1 : 0 : 0],

all of them smooth. Our aim is then to find all affine points in D(OK).
Moving on to Step 2 we must find then generators for L(P3−P1) and L(P3−P2).

These are given by easy calculation (á la Riemann–Roch, so to say):

f1(X,Y ) =
dY 2 − (a+ b+ c)Y − dX2 + (a− 3c)X

(a+ c)X
∈ L(P3 − P1)

f2(X,Y ) =
−dY 2 + (a+ b+ c)Y + dX2 + (−3a+ c)X

(a+ c)X
∈ L(P3 − P2)

Next (Step 3), consider

α1 = α2 = a+ c, β1 = b+ 4c, β2 = b+ 4a,

and define

R1(T ) = T 3 + (dX + a+ 5c)T 2 + (a+ c)(2dX + b+ 8c)T + (a+ c)2(b+ 4c),
R2(T ) = T 3 + (−dX + 5a+ c)T 2 + (a+ c)(−2dX + 8a+ b)T + (a+ c)2(b+ 4a),
S1(T ) = T 3 + (2dX + b+ 8c)T 2 + (b+ 4c)(dX + a+ 5c)T + (a+ c)(b + 4c)2,
S2(T ) = T 3 + (−2dX + 8a+ b)T 2 + (4a+ b)(−dX + 5a+ c)T + (a+ c)(b + 4a)2,

for which

Ri (αifi(X,Y )) = Si

(

βi

fi(X,Y )

)

= 0, i = 1, 2.

Now we consider (Step 4) the following sets:

(3.1) Ai = {ki ∈ OK | NK(ki) divides NK(αiβi)} / ∼,

where ∼ denotes we are actually interested in the equivalence class (modulo as-
sociated elements) and NK denotes the absolute norm map. Note that this step
depends on K.

As for Step 5 is concerned, we have f1 + f2 = −2.
Now we must consider (again depending on K), for every (k1, k2) ∈ (A1, A2),

the finite set Sk1,k2
of solutions to the unit equation

(3.2) k1u1 + k2u2 = −2(a+ c).

In Step 7, for any (k1, k2) ∈ (A1, A2) and for any (u1, u2) ∈ Sk1,k2
, we have

Rk1,u1
(X) = ResY (F (X,Y ), (a+ c)a1(X,Y )− k1u1b1(X))

= −(a+ c)3d2X3 (X − zk1,u1
) ,

where

zk1,u1
=

(a+ c+ k1u1)(4ck1u1 + k21u
2
1 + (a+ c)(b+ 4c))

u1u2k1k2d
.
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As the X–coordinates of all affine points in D(OK) appear as roots (in OK , of
course) of some Rk1,u1

(X), we have two candidates X = 0 and X = zk1,u1
.

Next step is computing the possible points. For X = 0 we have
(

0,
a+ b+ c

d

)

∈ D(K).

For X = zk1,u1
we have

(

zk1,u1
,

a+ c

a+ c+ k1u1
zk1,u1

)

∈ D(K),

and, remarkably,


zk1,u1
,

[

(a+ c)(b + 4c) + (2a+ b+ 2c)k1u1 ±
√
∆
]

(a+ c+ k1u1)

−2u1u2k1k2d



 ∈ D (L) ,

where L = K
(√

∆
)

and

∆ = 4(k1u1)
4 + 8(a+ 3c)(k1u1)

3 + (4a2 + b2 + 8ab+ 56ac+ 8bc+ 52c2)(k1u1)
2

+2(a+ c)(b + 4c)(6a+ b+ 6c)k1u1 + (a+ c)2(b + 4c)2

Hence, we have the following characterization.

Proposition 1. Let K be a number field and a, b, c, d ∈ OK . Then, there exists a

non–trivial solution in a.p. over OK for the Markoff–Rosenberger equation ax2 +
by2 + cz2 = dxyz if and only if one of the following conditions hold:

(a) d | (a+ b+ c).
(b) d | (a+c+k1u1)(k

2
1u

2
1+4ck1u1+(a+c)(b+4c)), for some (k1, k2) ∈ (A1, A2)

and some (u1, u2) ∈ Sk1,k2
.

4. Finiteness results

We will write, for a given ring R, R/R∗ for the set of elements of R up to
multiplication by a unit (as customary), and R/R2 for the set of elements of R
with no square root in R.

Let us call from now on, for a given number field K and given a, b, c, d ∈ OK ,

AP(a,b,c,d)(K) =
{

OK–solutions in a.p. to ax2 + by2 + cz2 = dxyz
}

,

where obviously we always have the trivial solution (0, 0, 0). Remember that we
are disregarding the Rosenberger conditions a|d, b|d, c|d.

First, mind that we have set–up a bijection between AP(a,b,c,d)(K) and the affine
points of D(OK), which we already know to be a finite set [11, 10] (because D has
three points at infinity).

Theorem 2. Let K be a number field and a, b, c, d ∈ OK . Then AP(a,b,c,d)(K) is

finite.

The following results follow directly from the characterization given on Proposi-
tion 1 above and deep results of Corvaja and Zannier [7]:

Theorem 3. Let K be a number field and a, b, c ∈ OK . Then

(1) We have

#
{

d ∈ OK/O∗
K | AP(a,b,c,d)(K) 6= {(0, 0, 0)}

}

< ∞.
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(2) If ∆ ∈ OK/O2
K , then

#
{

d ∈ OK/O∗
K | AP(a,b,c,d)(K) ( AP(a,b,c,d)

(

K
(√

∆
))}

< ∞.

(3) Let L/K be a finite algebraic extension. Then

#
{

d ∈ OK/O∗
K | AP(a,b,c,d)(K) ( AP(a,b,c,d)(L)

}

< ∞.

(4) We have

#
{

(d,∆) ∈ OK/O∗
K ×OK/O2

K | AP(a,b,c,d)(K) ( AP(a,b,c,d)

(

K
(√

∆
))}

< ∞.

(5) Let D ∈ Z>0 and denote by AD(K) the set of algebraic extensions of degree

D of K up to isomorphism. Then

#
{

(d, L) ∈ OK/O∗
K ×AD(K) | AP(a,b,c,d)(K) ( AP(a,b,c,d)(L)

}

< ∞.

Moreover, we have

#





⋃

L∈AD(K)





⋃

d∈OK/O∗

K

AP(a,b,c,d)(L)







 < ∞.

Proof. The first three statements come directly from Proposition 1. As for the
remaining cases, let us recall Corollary 1 from [7] for the case OK which stated
that if C is a plane curve with three or more points at infinity, K a number field
and D ∈ Z>0 then if L runs through all algebraic extension of degree D of K:

#





⋃

[L:K]≤D

C(OL)



 < ∞.

Applying this above result to D, we get the desired statements. �

Remark 1. Rosenberger proved that, with the extra conditions we mentioned in
the first section, the only equations with non–trivial integral solutions were those
given by

(a, b, c, d) ∈ {(1, 1, 1, 1), (1, 1, 1, 3), (1, 1, 2, 2), (1, 1, 2, 4), (1, 2, 3, 6), (1, 1, 5, 5)} .
All of them have solutions in a.p. The first five of them verify condition (a) on

the characterization given at Proposition 1. The last one

x2 + y2 + 5z2 = 5xyz,

does not, but it verifies the second condition (two solution in a.p. being (−3,−1, 1)
and (−7,−1, 5)).

5. Computational results

We have implemented in Magma [4] the algorithm developed on section 3. Note
that, given a number field there are only three major problems to solve: to compute
the sets Ai given on (3.1), to solve the unit equation given by (3.2) and to determine
if an algebraic number is integral; they are sorted out by the Magma functions
NormEquation, UnitEquation and IsIntegral, respectively.

Our original goal, the study of Markoff triples in a.p. can by now be easily
achieved.
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Theorem 4.

• AP(1,1,1,1)(Q) = {(0, 0, 0), (3, 3, 3), (−15,−6, 3), (3,−6,−15)}.
• AP(1,1,1,3)(Q) = {(0, 0, 0), (1, 1, 1), (−5,−2, 1), (1,−2,−5)}.
• If d 6= 1, 3, then AP(1,1,1,d)(Q) = {(0, 0, 0)}.

Actually, Markoff himself proved [12, 13] that, if d 6= 1, 3, the equation has no
integer solutions, so the general case is trivial. For the cases d = 1, 3 we run our
algorithm to obtain the above results. Note that a simpler algorithm is available
thanks to Poulakis and Voskos [15] when the base field is Q.

So, as a direct application of the algorithms explained above, we tried next to
study exhaustively the generalized Markoff equation

x2 + y2 + z2 = dxyz, d ∈ Z

looking for solution in a.p. over arbitrary quadratic fields.
When we move to this, more general, case, we find a groundbreaking paper by

Silverman [19]. In that paper, known facts from the integral case (how to obtain all
solutions, number of points of bounded height and so on) are carefully generalized
for the imaginary quadratic case. For this case we obtain the following result.

Theorem 5. Let D ∈ Z/Z2, D < 0 and i =
√
−1. Then

• AP(1,1,1,1)(Q(i)) = {(0, 0, 0), (3, 3, 3), (−15,−6, 3), (3,−6,−15),

(2,±2i+ 2,±4i+ 2), (±i+ 2, 2,∓i+ 2),

(±i+ 2,±2i− 1,±3i− 4), (±2i− 1,−1,∓2i− 1),

(±4i+ 2, 2i+ 2, 2), (±3i− 4,±2i− 1,±i+ 2)}
• AP(1,1,1,2)(Q(i)) = {(0, 0, 0), (±2i+ 1,±i+ 1, 1), (1,±i+ 1,±2i+ 1)} .
• AP(1,1,1,d)(Q(

√
D)) = AP(1,1,1,d)(Q), if (D, d) 6= (−1, 1), (−1, 2).

Proof. Let us put a = b = c = 1 in the algorithm. Under these hypothesis, the sets
Ai given on (3.1) satisfy A1 = A2 and, if ki ∈ Ai then it must hold NK(ki) | 100.
Now we have ki = u + v

√
D (resp. ki = (u + v

√
D)/2) if D 6≡ 1 (mod 4) (resp.

D ≡ 1 (mod 4)).
− If v 6= 0 then |D| ≤ 100 (resp. |D| ≤ 400). Hence we just perform the

algorithm for all imaginary quadratic fields up to this bound. For every (k1, k2) ∈
A1 × A2 we compute the unit equation k1u1 + k2u2 = −4 (see equation (3.2)).
For every solution of this, we make wk1,u1

= zk1,u1
d. Please note that up to

now our arguments are independent of d. As we need zk1,u1
∈ OK , in particular

wk1,u1
∈ OK . So with this condition we can forget about those elements where

NK(wk1,u1
) /∈ Z. Next we factor NK(wk1,u1

) = r · s2 with r ∈ Z/Z2 and (r, s) = 1.
This way, we obtain the candidate shortlist d = s. Now we run the algorithm to
compute AP(1,1,1,d)(Q(

√
D)) within a finite set of pairs (d,D). For all these, we

get

AP(1,1,1,d)(Q(
√
−D)) 6= AP(1,1,1,d)(Q) iff (D, d) = (−1, 1), (−1, 2).

− If v = 0 we have ki ∈ {1, 2, 5, 10} for all D. As we have previously dealt with
the cases |D| ≤ 400 or |D| ≤ 100 (depending on D mod 4) we have to concern
about |D| > 400 or |D| > 100, and then Ai = {1, 2, 5, 10} and the units in the ring
of integers of Q(

√
−D) are just ±1. The case now parallels the rational one and

AP(1,1,1,d)(Q(
√
−D)) = AP(1,1,1,d)(Q).
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Please note that Silverman [19, Theorem 0.1] proves (among many other things)
that if d ≥ 3, the only quadratic imaginary field for which there are Markoff triples
at all is D = −1. So we might have proved the theorem looking only at cases
(d,D) ∈ {(1, D), (2, D), (d,−1)} for any D and d ≥ 3. In any case, for these cases
we would still need the previous arguments. So, outstanding as Silverman’s result
is, it also is of little use for the proof of this result. �

For the case of real quadratic case, we have put our algorithm to work in K =
Q(

√
D), for |d| ≤ 103 and 1 < ∆K ≤ 104 (∆K being the discriminant of OK). After

these computations, we can state the following conjecture.

Conjecture 1.

#





⋃

(d,D)∈Z/Z∗×Z/Z2

AP(1,1,1,d)

(

Q(
√
D)

)



 = 178.

Moreover, the following table showes all the triples in a.p. over quadratic fields:

d D Markoff triples in a.p. over Z[α] = O
Q(

√

D)
not in Z: first term and difference

1

−1
(α+ 2, α− 3), (−α + 2, α), (2α − 1,−2α), (α + 2,−α), (−4α + 2, 2α)
(−3α − 4, α+ 3), (−2α− 1, 2α), (4α + 2,−2α), (2, 2α), (2,−2α)
(3α − 4,−α+ 3), (−α+ 2,−α− 3)

2
(4α + 8,−4α), (11α − 13,−23α− 6), (−4α + 8, 4α), (−7α − 7, 7α)
(−11α − 13, 23α − 6), (−35α − 25, 23α + 6), (35α − 25,−23α+ 6)
(7α − 7,−7α)

3 (9α + 18,−9α), (−9α+ 18, 9α)

5

(−35α − 5, 22α + 11), (22α − 11,−22α − 11), (−7α− 6, 4α + 5)
(−9α + 8, 22α+ 11), (35α + 30,−22α− 11), (−7α − 9, 2α+ 7),
(α+ 4,−5α+ 2), (−3α+ 5,−2α − 7), (−α + 3, 4α− 1)
(7α + 1,−4α+ 1), (−α+ 3, 5α + 7), (14α − 3,−10α− 2)
(−14α − 17, 10α + 8), (9α+ 17,−22α− 11), (−22α − 33, 22α+ 11)
(3α + 8, 2α− 5), (7α − 2,−2α+ 5), (−9α+ 8, 5α− 2), (9α+ 17,−5α− 7)
(6α − 1,−10α− 8), (−6α − 7, 10α + 2), (α + 4,−4α− 5)

6 (−6α − 12, 6α), (6α− 12,−6α), (3α − 3,−3α), (−3α − 3, 3α)
11 (−2α − 4, 4α− 6), (6α − 16,−4α+ 6), (−6α − 16, 4α+ 6), (2α − 4,−4α− 6)
14 (−2α − 4, 2α), (2α − 4,−2α)
17 (4α + 13, α− 10), (−4α + 9,−α− 11), (6α − 7,−α+ 10), (−6α− 13, α+ 11)
21 (3α − 3, 9), (−3α + 12,−9), (−3α − 6, 9), (3α + 15,−9)

29
(−11α − 32, 7α + 14), (11α − 21,−7α+ 7), (3α − 4,−2α+ 5),
(−3α − 7, 2α+ 7), (α+ 7,−2α− 7), (−3α − 7, 7α− 7), (−α+ 6, 2α− 5),
(3α − 4,−7α− 14)

41
(−4α + 15, α− 10), (2α − 3,−α+ 4), (5,−α− 5), (2α − 3, α+ 11)
(−2α − 5, α+ 5), (5, α− 4), (4α + 19,−α− 11), (−2α − 5,−α+ 10)

2

−1 (1,−α), (2α + 1,−α), (1, α), (−2α + 1, α)
2 (−2α + 4, 2α), (2α + 4,−2α)
6 (3α − 6,−3α), (−3α − 6, 3α)
11 (−3α − 8, 2α+ 3), (3α − 8,−2α+ 3), (α− 2,−2α− 3), (−α− 2, 2α− 3)
14 (−α− 2, α), (α− 2,−α)

3
3 (3α + 6,−3α), (−3α + 6, 3α)
6 (α− 1,−α), (−2α− 4, 2α), (−α− 1, α), (2α− 4,−2α)
21 (α+ 5,−3), (α− 1, 3), (−α + 4,−3), (−α− 2, 3)

4 2 (α+ 2,−α), (−α+ 2, α)

6 6 (−α− 2, α), (α− 2,−α)

7 2 (α− 1,−α), (−α− 1, α)

9 3 (α+ 2,−α), (−α+ 2, α)

11 5 (−2α − 3, 2α+ 1), (2α − 1,−2α− 1)
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In particular, if (d,D) ∈ Z/Z∗ × Z/Z2 does not appear in the following tables,

then AP(1,1,1,d)

(

Q(
√
D)

)

= AP(1,1,1,d)(Q):

d 1
D −1 2 3 5 6 11 14 17 21 29 41

#AP(1,1,1,d)(Q(
√
D)) 16 12 6 26 8 8 6 8 8 12 12

d 2 3 4 6 7 9 11
D −1 2 6 11 14 3 6 21 2 6 2 3 5

#AP(1,1,1,d)(Q(
√
D)) 5 3 3 5 3 6 8 8 3 3 3 3 3

Remark 2. Denote by F2 the union of all quadratic fields, and for d ∈ Z define the
plane curve

Dd : dY 3 − 3Y 2Z − dX2Y − 2X2Z = 0.

Corvaja and Zannier [7, Corollary 1] tell us that Dd(OF2
) is finite. The above

conjecture asserts that in fact we have been able to compute explicitely the set
Dd(OF2

). Moreover, it asserts that the uniparametric family Dd, where d run over
the rational intergers, has only a finite number of points over OF2

and gives all of
them.

After that, we have taken a longer step, and have computed many examples for
AP(1,1,1,3)(K) where K is any number field such that |∆K | ≤ 104. In particular if

|∆K | ≤ 104 then [K : Q] ≤ 7, after Minkowski’s bound. We have used the online
tables of number fields with bounded discriminant from the PARI group [14]. There
are precisely 9115 such fields.

In the table below we display the minimal polynomial for a primitive element of
K, along with the discriminant ∆K and the number nK of Markoff triples in a.p.
over OK (for those cases where there are more than the known rational triples),
that is nK = #AP(1,1,1,3)(K).

K ∆K nK K ∆K nK

x
2
− 3 12 6 x

2
− x− 5 21 8

x
2
− 6 24 8 x

3
− 2 −108 6

x
3
− x

2
− 8x− 3 1425 6 x

3
− x

2
− 6x+ 3 993 6

x
3
− x

2
− 8x+ 9 1257 8 x

3
− x

2
− 7x+ 4 1509 6

x
3
− x

2
− 8x− 1 1937 6 x

3
− 9x− 3 2673 6

x
3
− x

2
− 13x+ 1 2292 6 x

3
− x

2
− 9x+ 6 3021 6

x
3
− 8x− 2 1940 6 x

3
− 9x− 5 2241 6

x
3
− 9x− 2 2808 6 x

3
− 10x− 2 3892 6

x
3
− x

2
− 10x+ 7 4065 6 x

3
− x

2
− 15x− 15 3540 6

x
3
− x

2
− 18x+ 33 5073 6 x

3
− x

2
− 21x+ 33 5172 6

x
3
− x

2
− 13x− 10 3877 6 x

3
− x

2
− 12x+ 15 4281 5

x
3
− 21x− 24 5373 6 x

3
− 12x− 6 5940 6

x
3
− x

2
− 23x+ 39 6108 6 x

3
− x

2
− 12x+ 3 7473 6

x
3
− x

2
− 17x+ 27 8628 6 x

3
− x

2
− 18x+ 30 9192 6

x
3
− 30x− 27 9813 6 x

4
− x

2
+ 1 144 6

x
4
− x

3
− x

2
− 2x+ 4 441 8 x

4
− 2x

2
+ 4 576 8

x
4
+ 4x

2
+ 1 2304 6 x

4
+ 9 2304 8

x
4
+ x

2
+ 4 3600 6 x

4
+ 6x

2
+ 18 4608 8

x
4
+ 3x

2
− 6x+ 6 4752 6 x

4
+ 11x

2
+ 25 7056 8
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x
4
− 2x

3
− x

2
+ 2x+ 22 7056 6 x

4
− 2x

3
+ 4x

2
+ 6 7488 6

x
4
− 2x

3
− 2x+ 1 −1728 6 x

4
− x

3
− 3x

2
− x+ 1 −1323 8

x
4
− x

3
− x

2
− 2x+ 1 −1791 5 x

4
− 5 −2000 6

x
4
− x

2
− 3x− 2 −2151 5 x

4
− x

3
− x

2
− 5x− 5 −2475 6

x
4
− x

3
− x− 2 −2943 6 x

4
− 3x

2
− 1 −2704 6

x
4
− 4x

2
− 3x+ 1 −2763 6 x

4
− 2x

2
− 4 −1600 6

x
4
− x

2
− 3x+ 1 −3303 6 x

4
+ x

2
− 6x+ 1 −3312 6

x
4
− 2x

3
− x

2
+ 2x− 2 −3312 6 x

4
− 2x

3
− 2x+ 2 −3632 6

x
4
+ 3x

2
− 9 −3600 10 x

4
− x

3
+ 2x

2
+ x− 2 −3951 6

x
4
− 2x

2
− 2 −4608 8 x

4
+ 2x

2
− 2 −4608 6

x
4
− 2x

3
+ 3x

2
+ x− 2 −4671 5 x

4
− 2x

3
− 3x− 1 −4675 6

x
4
− 3x

2
− 6x− 3 −5616 6 x

4
− 2x

3
+ 3x

2
− 2x− 2 −5616 6

x
4
+ 2x

2
− 11 −6336 8 x

4
− 2x

2
− 11 −6336 6

x
4
− x

3
+ 2x

2
− 2x− 2 −6444 6 x

4
− 2x

3
+ x

2
− 3 −6768 6

x
4
− x

2
− 6x− 2 −6768 6 x

4
− 3 −6912 6

x
4
− x

3
− 4x− 5 −6507 6 x

4
− 2x

2
− 3x+ 3 −6603 6

x
4
− x

3
− 3x

2
+ 4x+ 2 −7668 6 x

4
− x

3
− x

2
+ 10x− 20 −6975 7

x
4
− x

2
− 3 −8112 6 x

4
− x

3
+ x

2
+ 3x− 3 −8739 5

x
4
− 2x

3
− 3x

2
+ 4x− 2 −8640 8 x

4
− 2x

3
− 3x

2
− 2x+ 1 −8640 8

x
4
− x

3
− x

2
− 4x− 2 −9012 6 x

4
− x

3
+ 5x

2
+ x− 2 −9036 6

x
4
− 2x

3
− 4x

2
− 2x+ 1 −9408 6 x

4
+ 3x

2
− 12 −9747 7

x
4
− x

3
− 4x

2
+ 4x+ 1 1125 10 x

4
− 6x

2
+ 4 1600 6

x
4
− 2x

3
− 7x

2
+ 8x+ 1 3600 6 x

4
− 4x

2
+ 1 2304 24

x
4
− 2x

3
− 3x

2
+ 4x+ 1 4752 6 x

4
− 2x

3
− 4x

2
+ 5x+ 5 2525 8

x
4
− 2x

3
− 4x

2
+ 2x+ 1 7488 6 x

4
− 5x

2
+ 1 7056 12

x
4
− x

3
− 7x

2
+ 3x+ 9 4525 7 x

4
− 2x

3
− 7x

2
+ 2x+ 7 9792 6

x
4
− 6x

2
− 3x+ 3 9909 10 x

4
− x

3
− 5x

2
+ 3x+ 4 8468 6

x
4
− 5x

2
+ 2 9248 6 x

5
− 2x

4
+ x

2
− 2x− 1 −9759 6

The behaviour seems rather unpredictable here, including some instances where
some fields do appear, but none of its subfields do (like the example with ∆K = 1125
above). And the existence of many examples close to the chosen bound prevents
us to establish a conjecture for this case, as we did above.

Remark 3. Here we present the results concerning the density of number fields of
bounded discriminant which have non–rational Markoff triples in a.p.; let ∆ ∈ N

and

r∆ =
#
{

K | |∆K | ≤ ∆, AP(1,1,1,3)(Q) ( AP(1,1,1,3)(K)
}

#{K | |∆K | ≤ ∆} .

Then

∆ 50 100 500 1000 5000 10000
r∆ 0.088 0.042 0.015 0.009 0.012 0.0010

Data: All the Magma sources are available on the first author’s webpage.
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