2,466 research outputs found
Recommended from our members
Targeting of the hepatitis B virus precore protein to the endoplasmic reticulum membrane: after signal peptide cleavage translocation can be aborted and the product released into the cytoplasm.
The major hepatitis B virus (HBV) core protein is a viral structural protein involved in nucleic acid binding. Its coding sequence contains an extension of 29 codons (the "precore" region) at the amino terminus of the protein which is present in a fraction of the viral transcripts. This region is evolutionarily conserved among mammalian and avian HBVs, suggesting it has functional importance, although at least for duck HBV it has been shown to be nonessential for replication of infectious virions. Using in vitro assays for protein translocation across the endoplasmic reticulum membrane, we found that the precore region of the HBV genome encodes a signal sequence. This signal sequence was recognized by signal recognition particle, which targeted the nascent precore protein to the endoplasmic reticulum membrane with efficiencies comparable to those of other mammalian secretory proteins. A 19-amino acid signal peptide was removed by signal peptidase on the lumenal side of the microsomal membrane, generating a protein similar to the HBV major core protein, but containing 10 additional amino acids from the precore region at its amino terminus. Surprisingly, we found that 70-80% of this signal peptidase-cleaved product was localized on the cytoplasmic side of the microsomal vesicles and was not associated with the membranes. We conclude that translocation was aborted by an unknown mechanism, then the protein disengaged from the translocation machinery and was released back into the cytoplasm. Thus, a cytoplasmically disposed protein was created whose amino terminus resulted from signal peptidase cleavage. The remaining 20-30% appeared to be completely translocated into the lumen of the microsomes. A deletion mutant lacking the carboxy-terminal nucleic acid binding domain of the precore protein was similarly partitioned between the lumen of the microsomes and the cytoplasmic compartment, indicating that this highly charged domain is not responsible for the aborted translocation. We discuss the implications of our findings for the protein translocation process and suggest a possible role in the virus life cycle
An ongoing case-control study to evaluate the NHS Bowel Cancer Screening Programme
© 2014 Massat et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated
Genetic and biochemical analyses of chromosome and plasmid gene homologues encoding ICL and ArCP domains in Vibrioanguillarum strain 775
Anguibactin, the siderophore produced by Vibrio anguillarum 775 is synthesized from 2,3-dihydroxybenzoic acid (DHBA), cysteine and hydroxyhistamine via a nonribosomal peptide synthetase (NRPS) mechanism. Most of the genes encoding anguibactin biosynthetic proteins are harbored by the pJM1 plasmid. In this work we report the identification of a homologue of the plasmid-encoded angB on the chromosome of strain 775. The product of both genes harbor an isochorismate lyase (ICL) domain that converts isochorismic acid to 2,3-dihydro-2,3-dihydroxybenzoic acid, one of the steps of DHBA synthesis. We show in this work that both ICL domains are functional in the production of DHBA in V. anguillarum as well as in E. coli. Substitution by alanine of the aspartic acid residue in the active site of both ICL domains completely abolishes their isochorismate lyase activity in vivo. The two proteins also carry an aryl carrier protein (ArCP) domain. In contrast with the ICL domains only the plasmid encoded ArCP can participate in anguibactin production as determined by complementation analyses and site-directed mutagenesis in the active site of the plasmid encoded protein, S248A. The site-directed mutants, D37A in the ICL domain and S248A in the ArCP domain of the plasmid encoded AngB were also tested in vitro and clearly show the importance of each residue for the domain function and that each domain operates independently.
Transformer-based normative modelling for anomaly detection of early schizophrenia
Despite the impact of psychiatric disorders on clinical health, early-stage
diagnosis remains a challenge. Machine learning studies have shown that
classifiers tend to be overly narrow in the diagnosis prediction task. The
overlap between conditions leads to high heterogeneity among participants that
is not adequately captured by classification models. To address this issue,
normative approaches have surged as an alternative method. By using a
generative model to learn the distribution of healthy brain data patterns, we
can identify the presence of pathologies as deviations or outliers from the
distribution learned by the model. In particular, deep generative models showed
great results as normative models to identify neurological lesions in the
brain. However, unlike most neurological lesions, psychiatric disorders present
subtle changes widespread in several brain regions, making these alterations
challenging to identify. In this work, we evaluate the performance of
transformer-based normative models to detect subtle brain changes expressed in
adolescents and young adults. We trained our model on 3D MRI scans of
neurotypical individuals (N=1,765). Then, we obtained the likelihood of
neurotypical controls and psychiatric patients with early-stage schizophrenia
from an independent dataset (N=93) from the Human Connectome Project. Using the
predicted likelihood of the scans as a proxy for a normative score, we obtained
an AUROC of 0.82 when assessing the difference between controls and individuals
with early-stage schizophrenia. Our approach surpassed recent normative methods
based on brain age and Gaussian Process, showing the promising use of deep
generative models to help in individualised analyses.Comment: 10 pages, 2 figures, 2 tables, presented at NeurIPS22@PAI4M
Galactose Epimerase Deficiency: Expanding the Phenotype
Galactose epimerase deficiency is an inborn error of metabolism due to uridine diphosphate-galactose-4'-epimerase (GALE) deficiency. We report the clinical presentation, genetic and biochemical studies in two siblings with generalized GALE deficiency.Patient 1: The first child was born with a dysmorphic syndrome. Failure to thrive was noticed during the first year. Episodes of heart failure due to dilated cardiomyopathy, followed by liver failure, occurred between 12 and 42 months. The finding of a serum transferrin isoelectrofocusing (IEF) type 1 pattern led to the suspicion of a congenital disorder of glycosylation (CDG). Follow-up disclosed psychomotor disability, deafness, and nuclear cataracts.Patient 2: The sibling of patient 1 was born with short limbs and hip dysplasia. She is deceased in the neonatal period due to intraventricular hemorrhage in the context of liver failure. Investigation disclosed galactosuria and normal transferrin glycosylation.Next-generation sequence panel analysis for CDG syndrome revealed the previously reported c.280G>A (p.[V94M]) homozygous mutation in the GALE gene. Enzymatic studies in erythrocytes (patient 1) and fibroblasts (patients 1 and 2) revealed markedly reduced GALE activity confirming generalized GALE deficiency. This report describes the fourth family with generalized GALE deficiency, expanding the clinical spectrum of this disorder, since major cardiac involvement has not been reported before.info:eu-repo/semantics/publishedVersio
Whole body composition analysis by the BodPod air-displacement plethysmography method in children with phenylketonuria shows a higher body fat percentage
BACKGROUND: Phenylketonuria (PKU) causes irreversible central nervous system damage unless a phenylalanine (PHE) restricted diet with amino acid supplementation is maintained. To prevent growth retardation, a protein/amino acid intake beyond the recommended dietary protein allowance is mandatory. However, data regarding disease and/or diet related changes in body composition are inconclusive and retarded growth and/or adiposity is still reported. The BodPod whole body air-displacement plethysmography method is a fast, safe and accurate technique to measure body composition. AIM: To gain more insight into the body composition of children with PKU. METHODS: Patients diagnosed with PKU born between 1991 and 2001 were included. Patients were identified by neonatal screening and treated in our centre. Body composition was measured using the BodPod system (Life Measurement Incorporation©). Blood PHE values determined every 1–3 months in the year preceding BodPod analysis were collected. Patients were matched for gender and age with data of healthy control subjects. Independent samples t tests, Mann–Whitney and linear regression were used for statistical analysis. RESULTS: The mean body fat percentage in patients with PKU (n = 20) was significantly higher compared to healthy controls (n = 20) (25.2% vs 18.4%; p = 0.002), especially in girls above 11 years of age (30.1% vs 21.5%; p = 0.027). Body fat percentage increased with rising body weight in patients with PKU only (R = 0.693, p = 0.001), but did not correlate with mean blood PHE level (R = 0.079, p = 0.740). CONCLUSION: Our data show a higher body fat percentage in patients with PKU, especially in girls above 11 years of age
Simple estimators of the intensity of seasonal occurrence
<p>Abstract</p> <p>Background</p> <p>Edwards's method is a widely used approach for fitting a sine curve to a time-series of monthly frequencies. From this fitted curve, estimates of the seasonal intensity of occurrence (i.e., peak-to-low ratio of the fitted curve) can be generated.</p> <p>Methods</p> <p>We discuss various approaches to the estimation of seasonal intensity assuming Edwards's periodic model, including maximum likelihood estimation (MLE), least squares, weighted least squares, and a new closed-form estimator based on a second-order moment statistic and non-transformed data. Through an extensive Monte Carlo simulation study, we compare the finite sample performance characteristics of the estimators discussed in this paper. Finally, all estimators and confidence interval procedures discussed are compared in a re-analysis of data on the seasonality of monocytic leukemia.</p> <p>Results</p> <p>We find that Edwards's estimator is substantially biased, particularly for small numbers of events and very large or small amounts of seasonality. For the common setting of rare events and moderate seasonality, the new estimator proposed in this paper yields less finite sample bias and better mean squared error than either the MLE or weighted least squares. For large studies and strong seasonality, MLE or weighted least squares appears to be the optimal analytic method among those considered.</p> <p>Conclusion</p> <p>Edwards's estimator of the seasonal relative risk can exhibit substantial finite sample bias. The alternative estimators considered in this paper should be preferred.</p
Binary and Millisecond Pulsars at the New Millennium
We review the properties and applications of binary and millisecond pulsars.
Our knowledge of these exciting objects has greatly increased in recent years,
mainly due to successful surveys which have brought the known pulsar population
to over 1300. There are now 56 binary and millisecond pulsars in the Galactic
disk and a further 47 in globular clusters. This review is concerned primarily
with the results and spin-offs from these surveys which are of particular
interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living
Reviews in Relativity (http://www.livingreviews.org
TLR7-mediated skin inflammation remotely triggers chemokine expression and leukocyte accumulation in the brain
Background:
The relationship between the brain and the immune system has become increasingly topical as, although it is immune-specialised, the CNS is not free from the influences of the immune system. Recent data indicate that peripheral immune stimulation can significantly affect the CNS. But the mechanisms underpinning this relationship remain unclear. The standard approach to understanding this relationship has relied on systemic immune activation using bacterial components, finding that immune mediators, such as cytokines, can have a significant effect on brain function and behaviour. More rarely have studies used disease models that are representative of human disorders.
Methods:
Here we use a well-characterised animal model of psoriasis-like skin inflammation—imiquimod—to investigate the effects of tissue-specific peripheral inflammation on the brain. We used full genome array, flow cytometry analysis of immune cell infiltration, doublecortin staining for neural precursor cells and a behavioural read-out exploiting natural burrowing behaviour.
Results:
We found that a number of genes are upregulated in the brain following treatment, amongst which is a subset of inflammatory chemokines (CCL3, CCL5, CCL9, CXCL10, CXCL13, CXCL16 and CCR5). Strikingly, this model induced the infiltration of a number of immune cell subsets into the brain parenchyma, including T cells, NK cells and myeloid cells, along with a reduction in neurogenesis and a suppression of burrowing activity.
Conclusions:
These findings demonstrate that cutaneous, peripheral immune stimulation is associated with significant leukocyte infiltration into the brain and suggest that chemokines may be amongst the key mediators driving this response
- …