34 research outputs found
Recommended from our members
Health-related quality of life in Huntington’s Disease patients: a comparison of proxy assessment and patient self-rating using the disease-specific Huntington’s Disease health-related quality of life questionnaire (HDQoL)
Huntington’s disease (HD) is a fatal, neurodegenerative disease for which there is no known cure. Proxy evaluation is relevant for HD as its manifestation might limit the ability of persons to report their health-related quality of life (HrQoL). This study explored patient–proxy ratings of HrQoL of persons at different stages of HD, and examined factors that may affect proxy ratings. A total of 105 patient–proxy pairs completed the Huntington’s disease health-related quality of life questionnaire (HDQoL) and other established HrQoL measures (EQ-5D and SF-12v2). Proxy–patient agreement was assessed in terms of absolute level (mean ratings) and intraclass correlation. Proxies’ ratings were at a similar level to patients’ self-ratings on an overall Summary Score and on most of the six Specific Scales of the HDQoL. On the Specific Hopes and Worries Scale, proxies on average rated HrQoL as better than patients’ self-ratings, while on both the Specific Cognitive Scale and Specific Physical and Functional Scale proxies tended to rate HrQoL more poorly than patients themselves. The patient’s disease stage and mental wellbeing (SF-12 Mental Component scale) were the two factors that primarily affected proxy assessment. Proxy scores were strongly correlated with patients’ self-ratings of HrQoL, on the Summary Scale and all Specific Scales. The patient–proxy correlation was lower for patients at moderate stages of HD compared to patients at early and advanced stages. The proxy report version of the HDQoL is a useful complementary tool to self-assessment, and a promising alternative when individual patients with advanced HD are unable to self-report
The usefulness of growth hormone treatment for psychological status in young adult survivors of childhood leukaemia: an open-label study
-1 SD) were included in the study. A final group of 13 patients (9 males and 4 females), mean age 23.7 ± 2.9 years (range 20 – 29.7) completed a 2-year treatment with GH. IQ and neuropsychological performance were assessed at pre-treatment (T1) and after one (T2) and two (T3) years. ANOVA was performed with assessment at T1, T2 and T3 as repeated measurements factor. Relations between test score changes and changes of IGF-I levels were determined by calculating the Pearson correlation coefficient. Results Scores on the cognitive tests were in the normal range. Verbal short- and long-term memory performance decreased between T1 and T2, and increased between T2 and T3. Performance at T3 was not significantly different from that at T1. Performance for sustained attention improved from T1 to T2 and from T1 to T3. Visual-spatial memory was improved after one year of GH treatment. A significant positive correlation was found for Δ IGF-I (T2-T1) with difference scores of visual-spatial memory (T2-T1 and T3-T1), indicating that IGF-I increase after one year of GH treatment is associated with increase in cognitive-perceptual performance at month 12 and 24. Conclusion Since the level of intellectual functioning of our patient cohort was in the normal range the present finding that GH treatment has negative effects on verbal memory and positive on attention and visual-spatial memory warrants similar studies in other groups of ALL survivors. Also, a lower dose of GH should be determined inducing as much IGF as needed to improve verbal as well as visual cognitive functions. The present findings indicate that more knowledge is needed before GH treatment may be recommended to enhance cognitive functions in ALL survivors
Remote ischemic conditioning: from experimental observation to clinical application: report from the 8th Biennial Hatter Cardiovascular Institute Workshop
In 1993, Przyklenk and colleagues made the intriguing experimental observation that 'brief ischemia in one vascular bed also protects remote, virgin myocardium from subsequent sustained coronary artery occlusion' and that this effect '.... may be mediated by factor(s) activated, produced, or transported throughout the heart during brief ischemia/reperfusion'. This seminal study laid the foundation for the discovery of 'remote ischemic conditioning' (RIC), a phenomenon in which the heart is protected from the detrimental effects of acute ischemia/reperfusion injury (IRI), by applying cycles of brief ischemia and reperfusion to an organ or tissue remote from the heart. The concept of RIC quickly evolved to extend beyond the heart, encompassing inter-organ protection against acute IRI. The crucial discovery that the protective RIC stimulus could be applied non-invasively, by simply inflating and deflating a blood pressure cuff placed on the upper arm to induce cycles of brief ischemia and reperfusion, has facilitated the translation of RIC into the clinical setting. Despite intensive investigation over the last 20 years, the underlying mechanisms continue to elude researchers. In the 8th Biennial Hatter Cardiovascular Institute Workshop, recent developments in the field of RIC were discussed with a focus on new insights into the underlying mechanisms, the diversity of non-cardiac protection, new clinical applications, and large outcome studies. The scientific advances made in this field of research highlight the journey that RIC has made from being an intriguing experimental observation to a clinical application with patient benefit
An overview of treatment approaches for chronic pain management
Pain which persists after healing is expected to have taken place, or which exists in the absence of tissue damage, is termed chronic pain. By definition chronic pain cannot be treated and cured in the conventional biomedical sense; rather, the patient who is suffering from the pain must be given the tools with which their long-term pain can be managed to an acceptable level. This article will provide an overview of treatment approaches available for the management of persistent non-malignant pain. As well as attempting to provide relief from the physical aspects of pain through the judicious use of analgesics, interventions, stimulations, and irritations, it is important to pay equal attention to the psychosocial complaints which almost always accompany long-term pain. The pain clinic offers a biopsychosocial approach to treatment with the multidisciplinary pain management programme; encouraging patients to take control of their pain problem and lead a fulfilling life in spite of the pain. © 2016 Springer-Verlag Berlin Heidelber
Effects of antagonistic co-contraction on differences between electromyography based and optimization based estimates of spinal forces
Estimates of spinal forces are quite sensitive to model assumptions, especially regarding antagonistic co-contraction. Optimization based models predict co-contraction to be absent, while electromyography (EMG) based models take co-contraction into account, but usually assume equal activation of deep and superficial parts of a muscle. The aim of the present study was to compare EMG based and optimization based estimates of spinal forces in a wide range of work tasks. Data obtained from ten subjects performing a total of 28 tasks were analysed with an EMG driven model and three optimization models, which were specifically designed to test the effects of the above assumptions. Estimates of peak spinal forces obtained using the different modelling approaches were similar for total muscle force and its compression component (on average EMG based predictions were 5% higher) and were closely related (R > 0.92), while differences in predictions of the peak shear component of muscle force were more substantial (with up to 39% lower estimates in optimization based models, R > 0.79). The results show that neither neglecting antagonistic co-contraction, nor assuming equal activation of deep and superficial muscles, has a major effect on estimates of spinal forces. The disparity between shear force predictions was due to an overestimation of activity of the lateral part of the internal oblique muscle by the optimization models, which is explained by the cost function preferentially recruiting larger muscles. This suggests that a penalty for active muscle mass should be included in the cost function used for predicting trunk muscle recruitment. © 2005 Taylor & Francis Group Ltd