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Abstract In 1993, Przyklenk and colleagues made the

intriguing experimental observation that ‘brief ischemia in

one vascular bed also protects remote, virgin myocardium

from subsequent sustained coronary artery occlusion’ and

that this effect ‘…. may be mediated by factor(s) activated,

produced, or transported throughout the heart during brief

ischemia/reperfusion’. This seminal study laid the foun-

dation for the discovery of ‘remote ischemic conditioning’

(RIC), a phenomenon in which the heart is protected from

the detrimental effects of acute ischemia/reperfusion injury

(IRI), by applying cycles of brief ischemia and reperfusion

to an organ or tissue remote from the heart. The concept of

RIC quickly evolved to extend beyond the heart, encom-

passing inter-organ protection against acute IRI. The cru-

cial discovery that the protective RIC stimulus could be

applied non-invasively, by simply inflating and deflating a

blood pressure cuff placed on the upper arm to induce

cycles of brief ischemia and reperfusion, has facilitated the

translation of RIC into the clinical setting. Despite inten-

sive investigation over the last 20 years, the underlying

mechanisms continue to elude researchers. In the 8th

Biennial Hatter Cardiovascular Institute Workshop, recent
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developments in the field of RIC were discussed with a

focus on new insights into the underlying mechanisms, the

diversity of non-cardiac protection, new clinical applica-

tions, and large outcome studies. The scientific advances

made in this field of research highlight the journey that RIC

has made from being an intriguing experimental observa-

tion to a clinical application with patient benefit.

Keywords Ischemia � Organ protection � Remote

ischemic conditioning � Reperfusion

Introduction

Ischemic heart disease (IHD) maintains its unrelenting grip

as the leading cause of death and disability worldwide.

Therefore, novel therapeutic strategies are required to

protect the heart against acute ischemia/reperfusion injury

(IRI) to attenuate cardiomyocyte death, preserve cardiac

function, prevent the onset of heart failure, and improve

clinical outcomes in patients with IHD. In 1993, Przyklenk

and colleagues [76] first demonstrated that applying cycles

of brief ischemia and reperfusion to myocardium in the

circumflex coronary artery territory protected remote virgin

myocardium in the left anterior descending coronary artery

territory. This intriguing observation extended the concept

of direct ischemic preconditioning of the heart, initially

described by Murry et al. [71] in 1986, to protect the heart

at a distance or ‘remote ischemic conditioning’ (RIC). Over

the last 20 years, the concept of RIC has evolved from

being an experimental observation, whose underlying

mechanisms continue to elude investigators, to a clinical

application which offers the therapeutic potential to benefit

patients with IHD (reviewed in [10, 31, 38–40]).

Yet many questions remain unanswered and several

issues remain unresolved. The 8th Biennial Hatter Car-

diovascular Institute Workshop, which was held at the

University College London Hatter Cardiovascular Institute

in the UK in April 2014, convened over 50 international

investigators to discuss some of these questions and issues

surrounding RIC. The focus of the Hatter Cardiovascular

Institute (HCI) Workshop was on RIC induced by brief

limb ischemia and reperfusion as this method of RIC has

been the most clinically applicable strategy. The discussed

topics included the mechanisms underlying RIC, non-car-

diac RIC protection, the clinical application of RIC, and

the potential for RIC to improve clinical outcomes.

New insights into the mechanisms underlying RIC: why

does it still elude us?

Despite intensive investigation over the last 20 years, the

mechanisms underlying RIC remain unclear. The current

paradigm divides the mechanistic pathway underlying RIC

into three inter-related components as follows [10, 31, 38,

40]:

(1) Remote organ or tissue: in response to the RIC

stimulus autacoids generated within the remote organ or

tissue activate a local afferent neural pathway [62, 86, 95].

(2) The connecting pathway: the mechanistic pathway

conveying the protective signal from the remote organ or

tissue to the target organ or tissue has not been fully

resolved. It has been shown to be dependent on both a

humoral pathway (i.e. comprising blood-borne protective

factor(s)) and a neural pathway to the remote organ or

tissue.

(3) Target organ or tissue: the blood-borne protective

factor(s) appear(s) to recruit intracellular signaling path-

ways from the remote organ or tissue which are known to

mediate the protective effects induced by direct ischemic

preconditioning and postconditioning.

What is the nature of the neural pathway underlying RIC?

Experimental and clinical studies have demonstrated that

RIC protection is dependent on an intact neural pathway to

the remote organ or tissue with local resection of the neural

pathway abolishing RIC protection [27, 63]. However, the

actual nature of the neural pathway in terms of its afferent,

central, and efferent components remains unclear. The

current paradigm has proposed that in response to the RIC

stimulus, autacoids such as adenosine [23, 62, 86] and
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bradykinin [95] are produced in the remote organ or tissue

resulting in the nitric oxide-dependant stimulation of local

afferent sensory nerves. At the HCI Workshop, Kharbanda

(Oxford, UK) presented unpublished human data investi-

gating whether adenosine provides the ‘trigger’ for the

limb RIC stimulus in IHD patients undergoing coronary

angiography. Utilizing the human forearm model, they

found that local arterial infusion of caffeine (a non-specific

adenosine receptor antagonist) into the trigger arm blocked

the beneficial effects of RIC on preventing ischemia-

induced endothelial dysfunction, and inhibited the pro-

duction of a cardioprotective plasma dialysate. Further-

more, the administration of an arterial infusion of

adenosine into the femoral artery resulted in the production

of a cardioprotective plasma dialysate in patients under-

going coronary angiography, confirming the findings in

experimental animal studies that adenosine acted as a

‘trigger’ for limb RIC [86]. Most recent experimental data

have suggested that the sensory arm of the neural pathway

leading from the remote organ or tissue may be recruited

by the activation of transient receptor potential vanilloid

(TRPV) receptors, which are prevalent in unmyelinated

small diameter (Ad & C) sensory fibers [6, 47, 81].

Experimental studies have demonstrated that the activation

of these fibers by topical capsaicin or nociceptive stimuli

can recapitulate limb RIC cardioprotection [6, 47, 81].

However, the neural components of the pathway

downstream of this sensory afferent neural pathway in the

remote organ or tissue remain unclear. Jones et al. [47]

found that cardioprotection elicited by peripheral noci-

ception was blocked by spinal transection at T7 but not C7,

suggesting that direct stimulation of cardiac nerves may be

responsible for conveying the cardioprotective signal to the

heart. In contrast to this study, and using an elegant

experimental optogenetic approach, Gourine (London, UK)

[64] has recently shown that the activity of the brainstem

vagal preganglionic neuronsis required to mediate the

protective effect of limb RIC on the heart, with their

activation inducing powerful cardioprotection and their

inhibition abrogating the beneficial effects of RIC [64]. To

study the role of the efferent vagal pathway to limb RIC

cardioprotection, Donato et al. [22] showed that resection

of the vagal nerve and atropine abolished the MI-limiting

effects of limb RIC in the rabbit heart and stimulation of

the vagal nerve recapitulated limb RIC cardioprotection.

However, dependency of limb RIC cardioprotection on the

parasympathetic nervous system appears to preclude a role

for a blood-borne cardioprotective factor.

Whether an efferent neural pathway is actually required

to convey the cardioprotective signal to the heart or whether

this is simply mediated by a blood-borne cardioprotective

factor to the heart is not fully resolved. Kingma et al. [52]

reported that neither the ganglionic blocker

(hexamethonium) nor cardiac denervation abolished renal

RIC protection of the canine heart. Similarly, Rassaf et al.

[79] found that MI size reduction by limb RIC in the murine

heart persisted despite femoral nerve resection (although

the sciatic nerve was not resected in this model). Clearly,

further studies are required to elucidate the details of the

neural pathway underlying limb RIC cardioprotection.

What is the identity of the blood-borne cardioprotective

factor?

The earliest experimental evidence for a blood-borne car-

dioprotective factor released by RIC was provided in 1999

by Dickson et al. [21], who demonstrated that the cardio-

protective effect elicited by ischemic preconditioning of

the heart and kidney in one rabbit could be transferred via

whole blood transfusion to a non-preconditioned rabbit.

Since then, a number of experimental studies have

attempted to identify the blood-borne cardioprotective

factor(s), resulting in a number of candidate factors being

proposed including calcitonin gene-related peptide [87],

opioids [73], endogenous cannabinoids [30], and hypoxia-

inducible factor-1a (HIF-1a) [50].

Although the actual identity of the factor remains

unclear, biochemical studies have suggested that the factor

may be a peptide less than 30 kDa in size [58, 84]. Using

proteomic analysis of plasma following RIC to identify the

blood-borne cardioprotective factor(s) has been challeng-

ing. At the HCI Workshop, a number of novel candidates

for the blood-borne cardioprotective factor(s) of RIC were

proposed, each with varying degrees of experimental evi-

dence: including (1) stromal-derived factor-1a or SDF-1a
(S Davidson, London, UK) [19]; (2) exosomes (Giricz and

Ferdinandy, Budapest, Hungary) [28]; nitrite (Heusch,

Essen, Germany) [78, 79]; (3) microRNA-144 (Redington,

Toronto, Canada) [60]; (4) HIF-1a (Prunier, Anger,

France) [48]; and (5) Apolipoprotein a-I (Prunier) [41]. Of

these, the most promising candidates for the blood-borne

cardioprotective factor of RIC in terms of the available

experimental evidence are probably SDF-1a, nitrite, and

microRNA-144, as in these three cases limb RIC was

demonstrated to elevate levels of the putative factor in the

plasma, and blocking the factor also abolished the cardio-

protective effect of RIC. However, these studies have

failed to provide direct evidence that the factor secreted

into the blood was actually responsible for the cardiopro-

tective effect. Furthermore, it is important to note that none

of these studies actually provided evidence that the pro-

duction of the putative factor in response to RIC was

dependent on an intact neural pathway to the limb, an

important omission given that the blood-borne cardiopro-

tective factor has been shown to be released downstream of

the neural pathway (see next section).
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How do the neural and humoral pathways interact

to mediate RIC?

The neural and humoral pathways underlying limb RIC

have been known to interact to mediate the protective

effect, but the actual nature of this relationship has not been

clear until very recently (see Fig. 1 for a hypothetical

scheme). Emerging studies from Redington’s and Botker’s

research groups have begun to unravel the interplay

between these two pathways in the setting of limb RIC.

The major advance in this regard, has been facilitated by

their use of an experimental model in which cardiopro-

tective plasma dialysate harvested from animals or humans

treated with limb RIC is demonstrated to reduce MI size in

naı̈ve animal hearts. Using this experimental model, they

have been able to provide evidence showing that the blood-

borne cardioprotective factor is produced downstream of

the neural pathway. Redington’s group has shown that the

cardioprotective plasma dialysate can be produced in ani-

mals and human volunteers in response to sensory neural

stimulation of the limb using a number of different

approaches including direct nerve stimulation [81], trans-

cutaneous electrical nerve stimulation [68], electro-acu-

puncture [80] and even topical capsaicin [6, 81]. Botker’s

group has demonstrated that diabetic patients with a

peripheral sensory neuropathy in their upper limbs do not

Fig. 1 Connecting the limb to the heart in RIC. This figure shows the

potential interplay between the neural pathway (green solid lines) and

humoral pathway (broken red lines) in mediating RIC cardioprotec-

tion. Cycles of brief upper limb ischemia/reperfusion induced by

inflation/deflation of a cuff placed on the upper arm produce the local

release of autacoids, which then activate local sensory afferent

neurons. One experimental study has shown the involvement of the

neuronal activity in the brainstem dorsal motor vagal nucleus

(DMVN) in RIC cardioprotection—this provides parasympathetic

innervation of the left ventricle and other internal organs. A

circulating blood-borne cardioprotective factor(s) is produced in

response to the RIC stimulus downstream of the local sensory afferent

neurons in the upper limb, but the actual source for its release is not

currently known. Potential sites of release of the cardioprotective

factor(s) include: (1) from the conditioned limb itself, (2) from the

central nervous system (brainstem), (3) from pre-/post-ganglionic

parasympathetic nerve endings within the heart (broken green lines);

and (4) from a non-conditioned remote organ/tissue receiving

parasympathetic innervation
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produce the cardioprotective plasma dialysate in response

to limb RIC, when compared to diabetic patients with no

sensory neuropathy [46]. Therefore, the combined evidence

suggests that the blood-borne cardioprotective factor is

most likely produced downstream of the neural pathway.

But of course questions remain as to where along the neural

pathway is the cardioprotective factor released into the

blood stream, and which cell is actually responsible for its

release.

Novel mediators of RIC cardioprotection in the heart

The current paradigm suggests that the cardioprotective

signal initiated by limb RIC recruits signal transduction

pathways (such as PI3K-Akt) in the target organ or tissue,

which are known to be mediators of direct ischemic pre-

conditioning and postconditioning [36, 37, 61]. In the HCI

Workshop, data were presented implicating two novel

mediators of limb RIC cardioprotection including aldehyde

dehydrogenase-2 (ALDH-2) and phospho-myozenin-2.

Kharbanda presented recent data showing in an animal MI

model and human volunteers that the protective effect of

limb RIC was abolished in the presence of an ALDH-2

inhibitor [13]. Interestingly, in support of a role for ALDH-

2, human volunteers with a Glu504Lys polymorphism in

ALDH-2 were found to be resistant to RIC protection

against ischemia-induced endothelial dysfunction [13].

Further study is required to determine where in the

mechanistic pathway ALDH-2 plays its mediatory role and

to identify its downstream effectors. Suleiman (Bristol,

UK) presented recent data investigating cardiac phospho-

proteomics in the setting of limb RIC, demonstrating the

phosphorylation of the cardiac sarcomeric protein, phos-

pho-myozenin-2. These findings suggest that RIC may

have functional effects on myocardial contractile function

[1]. The importance of this to the cardioprotective effect

induced by RIC remains to be investigated.

Protecting non-cardiac organs by limb RIC

The key advantage of limb RIC as a therapeutic strategy is

that it offers multi-organ protection against acute IRI. As

such limb, RIC has been shown to be beneficial in a

number of non-cardiac organs including the brain, the

kidney, and the liver. In the HCI Workshop, a number of

novel applications of RIC in non-cardiac protection were

discussed.

Neuroprotection by RIC

It has been well established in the neuroprotection exper-

imental literature that RIC can limit cerebral infarct size

following an acute ischemic stroke [29]. At the HCI

Workshop, Botker presented a recent clinical study inves-

tigating the effect of limb RIC in patients thrombolysed for

an acute ischemic stroke—no clear benefit was found in

terms of cerebral infarct size and functional recovery [44].

However, a small clinical study by Meng et al. [67] com-

prising 63 patients with prior stroke or transient ischemic

accident demonstrated that RIC repeated twice daily for

300 days was able to reduce the recurrence of stroke and to

improve functional recovery.

Cerebral IRI arising from perinatal hypoxic-ischemia,

results in significant neonatal morbidity and long-term

neurological impairment [59], despite the adoption of

hypothermic neuroprotection in the developed world [5]. In

this regard, N Robertson (London, UK) presented a recent

study investigating the effect of limb RIC applied at the

onset of reperfusion using a porcine model of neonatal

cerebral hypoxia–ischemia. Limb RIC preserved cerebral

white matter metabolism on magnetic resonance spectros-

copy and reduced white matter cell death following tran-

sient global cerebral hypoxia–ischemia, suggesting that

RIC may have therapeutic potential as a neuroprotective

strategy for mitigating brain injury and improving out-

comes in babies with birth asphyxia. This may have

important implications in low resource countries where

limb RIC could be used as a simple and low-cost neuro-

protective intervention.

Renoprotection by RIC

Limb RIC has been investigated as a renoprotective strat-

egy in several different clinical settings in which there is a

risk of acute renal IRI [26]. In patients undergoing either

cardiac bypass or major vascular surgery, acute renal IRI is

a major determinant of acute kidney injury (AKI), a

complication which occurs in 20–30 % of patients and

which is associated with worse clinical outcomes. Several

clinical studies have investigated a potential protective role

of RIC on AKI in these surgical settings, but the results

have been inconclusive [11, 77, 91]. The results of the

large multicentre ERICCA [33] and RIPHeart [69] trials

which are also investigating the effect of limb RIC on AKI

should hopefully provide a definitive answer as to whether

limb RIC is renoprotective in the setting of cardiac surgery.

Contrast-induced AKI (CI-AKI) is a significant cause of

renal impairment in IHD patients undergoing coronary

angiography and interventions, and one component of the

injury is due to acute renal ischemic injury, and therefore a

potential target for limb RIC [88]. Er et al. [24] have

investigated in the Renal Protection Trial the effect of limb

RIC on the incidence of CI-AKI in 100 high-risk patients

undergoing coronary angiography and interventions who

were pre-treated with intravenous normal saline and oral

N-acetylcysteine—limb RIC reduced the incidence of CI-
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AKI from 40 to 12 %. The ERIC-CIN study in the UK is

currently investigating whether the renoprotective effect of

limb RIC is still present in 362 patients pre-treated with

sodium bicarbonate prior to coronary angiography and

procedures [7]. At the HCI Workshop, Crimi (Pavia, Italy)

presented data investigating the effect of limb RIC on CI-

AKI in STEMI patients treated by primary percutaneous

coronary intervention (PPCI). In the original study, his

team had already demonstrated a cardioprotective effect of

limb RIC in this patient group with reduced enzymatic

myocardial infarct size, and in this post hoc sub-group

analysis they found that compared to control, limb RIC

appeared to reduce the incidence of AKI in those STEMI

patients with impaired renal function prior to PPCI [14,

15]. Finally, The EUROpean and Chinese cardiac and renal

Remote Ischemic Preconditioning Study (EURO-CRIPS)

trial will investigate both the renal and myocardial pro-

tective effects of limb RIC against CI-AKI and peri-pro-

cedural myocardial injury in 1,110 patients undergoing

elective PCI, respectively [70].

Acute renal IRI sustained during pediatric renal transplan-

tation is a critical determinant of graft function and clinical

outcomes. MacAllister (London, UK) presented unpublished

data from the REnal Protection Against Ischaemia–Reperfu-

sion in transplantation (REPAIRISRCTN30083294) trial, a

randomized double-blinded placebo-controlled trial of 400

living-donor renal transplant patients investigating the effect

of limb RIC on renal graft function. He found that in those

patients in whom limb RIC was administered to the donor and

recipient, the estimated GFR at 6 months post-transplantation

was increased compared to control, suggesting limb RIC to be

a potential therapeutic strategy for preserving renal graft

function post-transplantation.

Liver protection by RIC

B Davidson (London, UK) has been investigating in pre-

clinical studies the protective effect and mechanisms under-

lying hepatic protection against acute IRI induced by limb

RIC [2, 3, 49]. In the HCI Workshop, data were presented

translating this therapeutic approach into the clinical setting,

with a small study of 16 patients showing that limb RIC

reduced the release of liver enzymes following liver resection

surgery (ClinicalTrials.gov Identifier: NCT007965880). The

ongoing Remote Ischaemic PreCOnditioning in Liver

Transplant (RIPCOLT) study is currently investigating the

efficacy of limb RIC in 40 liver transplant patients on liver

protection and graft and patient survival.

Novel clinical applications of RIC to protect the heart

The first clinical study to demonstrate the clinical appli-

cation of limb RIC was by Redington and colleagues in

2006 who reported beneficial effects with this intervention

in children undergoing corrective cardiac surgery [12]

(Table 1). Since then limb RIC has been shown to attenuate

acute myocardial IRI in a number of different clinical

settings including cardiac bypass surgery [35, 89], major

vascular surgery [4], elective PCI [43], and more recently

STEMI patients treated by PPCI [8, 15, 75, 82, 94]

(Table 1). In the HCI Workshop, Walsh (Galway, Ireland)

presented details of the forthcoming Preconditioning

Shields Against Vascular Events in Surgery (SAVES) trial

(ClinicalTrials.gov Identifier:NCT01691911) which will

investigate the effect of limb RIC on peri-operative myo-

cardial injury in 400 patients undergoing major vascular

surgery.

In the HCI Workshop, several novel applications of limb

RIC for protecting the heart were discussed. Garcia-Dorado

(Barcelona, Spain) presented unpublished data demon-

strating the synergistic effect of limb RIC with either ex-

enatide or glucose–insulin–potassium therapy administered

at the time of reperfusion in terms of MI reduction in an

in vivo porcine model of acute IRI. The concept of com-

bining therapies which have a potential synergistic car-

dioprotective effect has not yet been tested in the clinical

setting and it may actually be a more effective therapeutic

strategy than using a mono therapy approach.

Limb RIC has already been shown to reduce MI size in

STEMI patients treated by PPCI (Table 1). However, in

developing countries in which PPCI is not readily avail-

able, STEMI patients are still reperfused by thrombolytic

therapy—whether RIC is cardioprotective in this setting is

not known. In the HCI Workshop, Hausenloy & Yellon

(London, UK) presented unpublished results of the ERIC-

LYSIS study (ClinicalTrials.gov Identifier:NCT02197117),

a 519 STEMI patient multi-center clinical trial in the Island

of Mauritius, showing that limb RIC initiated on arrival at

the hospital prior to thrombolysis, reduced serum enzy-

matic MI size by 17 %. A large clinical outcome study is

now planned to investigate whether limb RIC can reduce

cardiac death and hospitalization for heart failure at

12 months in thrombolysed STEMI patients (the ERIC-

LYSIS 2 trial).

The effect of RIC on exercise capacity in patients with

heart failure has recently been investigated by Redington

and colleagues [66]. Although they found no improvement

in oxygen consumption with RIC when compared to sham,

they did observe that plasma dialysate from both sham and

RIC patients reduced murine MI size compared to plasma

dialysate from historical healthy controls, suggesting heart

failure patients, irrespective of RIC or sham intervention,

may be subjected to a permanent chronic preconditioning

stimulus per se [66].

Most previous clinical studies have investigated the

cardioprotective effects of a single limb RIC stimulus
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targeted against an acute episode of IRI. Whether repeated

episodes of limb RIC, applied as a chronic therapeutic

intervention, are also beneficial has been recently investi-

gated. An experimental study has reported that repeating

RIC daily for 28 days prevented adverse post-MI left ven-

tricle (LV) remodeling in the rat heart [93]. The mechanism

for this beneficial effect is not clear but may relate to RIC-

mediated attenuation of the immune, inflammatory and

apoptotic response to MI. The concept of daily RIC is

already being tested in the clinical setting in several clinical

studies. Vanezis (Leicester, UK) presented details of the

ongoing Daily REmote Ischaemic Conditioning following

Acute Myocardial Infarction (DREAM, ClinicalTrials.gov

Identifier: NCT01664611) trial in the UK, which is

exploring the effect of daily RIC initiated after PPCI and

continued for 4 weeks in 72 STEMI patients presenting

with impaired LV ejection fraction (EF \ 45 %)—primary

endpoint of [5 % improvement in LVEF at 4 weeks post-

MI. In Canada, the Chronic Remote Ischemic Conditioning

to Modify Post-MI Remodeling (CRIC-RCT;ClinicalTri-

als.gov Identifier:NCT01817114) trial in Canada is testing

the effect of repeating RIC daily for 28 days on the change

from baseline in LV end diastolic volume at 28 days by

cardiac MRI in 82 STEMI patients treated by PPCI. Finally,

in the CONDI-HF study (ClinicalTrials.gov Identi-

fier:NCT02248441), Botker and colleagues are currently

investigating the effect of daily RIC in 50 chronic heart

failure patients using LV ejection fraction assessed by

cardiac MRI as the primary endpoint.

Chronic renal failure patients treated by haemodialysis

have a significantly increased risk of cardiovascular mor-

bidity and mortality. These patients experience repeated

bouts of acute myocardial ischemia and stunning every

time they have haemodialysis leading to chronic impair-

ment of LV systolic function, resulting in de novo and

recurrent heart failure with a 2-year mortality rate of 51 %

[9]. At the HCI Workshop, McIntyre (Ontario, Canada)

presented data investigating the potential cardioprotective

benefit of RIC in this patient group. They found that limb

RIC administered prior to haemodialysis prevented ST-

segment depression and attenuated myocardial stunning

compared to control, suggesting a potential cardioprotec-

tive effect of RIC on myocardial function in patients with

chronic kidney failure [16]. Interestingly, it has been

observed that haemodialysis patients with arteriovenous

fistula experience fewer complications and lower mortality

when compared to patients with alternative forms of vas-

cular access [74]. Whether the beneficial effect of having

arteriovenous fistula is inadvertently limb preconditioning

the patient by inducing episodes of limb ischemia was

raised as a possibility by McIntyre [54].

The majority of published clinical studies investigating

the efficacy of limb RIC have used a manual blood pressureT
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cuff to apply the RIC protocol. However, there is currently

an automated cuff device available for delivering the limb

RIC protocol. Ganske (CellAegis, Toronto, Cananda) pre-

sented the AutoRIC device which is able to deliver a

standard limb RIC protocol (four 5 min cycles of upper

arm cuff inflation/deflation) with a single push of a button,

facilitating the delivery of limb RIC in clinical trials,

especially where it is proposed as a potential chronic

therapy.

Why the neutral clinical RIC studies?

A number of clinical studies have failed to find any ben-

eficial effects of limb RIC in patients undergoing PCI [45],

CABG [51] and vascular surgery [92]; these include some

large clinical trials conducted in pediatric [65] and adult

cardiac surgery [42, 77]. Recent meta-analyses have for the

most part reported beneficial effects with limb RIC in terms

of reducing myocardial injury in the settings of cardiac

bypass surgery [17] and PCI [18].

The one setting in which the effect of RIC has been

predominantly positive is in STEMI patients treated by

PPCI with five proof-of-concept studies reporting cardio-

protective effects with limb RIC applied at the time of

PPCI [8, 15, 75, 82, 94]. Several review articles have been

published analyzing the potential reasons underlying the

failure to translate cardioprotection into the clinical setting

[32, 34, 72, 83]. At the HCI Workshop, some of these

factors were discussed—they relate to patient selection, the

RIC stimulus (the optimal stimulus remains unclear), the

blinding of the RIC stimulus, the study design and choice

of measured endpoints, confounding factors (such as age,

diabetes, hyperlipidemia which may interfere with cardio-

protection), and concomitant medications (such as volatile

anesthetics, nitrates, statins which also interfere with car-

dioprotection) [25, 32, 34, 72]. Heusch presented a retro-

spective analysis of the Essen RIC trial on CABG patients

[90], and identified anesthesia [55, 56], age, duration of

index ischemia and sulphonylurea treatment of diabetics

[57], but not use of nitroglycerine during surgery [53] as

potential confounders.

Improving clinical outcomes with limb RIC—Will it

change clinical practice?

Most of the published clinical studies have established that

limb RIC can limit myocardial injury in PCI, CABG and

STEMI patients (Table 1). In the HCI Workshop, Hau-

senloy presented the results of a clinical study reporting

that limb RIC could reduce the incidence of post-operative

atrial fibrillation, acute kidney injury, and it could shorten

ITU stay in patients undergoing CABG plus or minus valve

surgery, suggesting some benefit on short-term clinical

outcomes post-surgery [11]. Whether limb RIC can actu-

ally improve long-term clinical outcomes in these clinical

settings remains unknown. In this regard, Botker, Heusch,

and Dutka (Cambridge, UK) presented data at the HCI

Workshop suggesting that limb RIC may improve long-

term clinical endpoints in STEMI [85], CABG surgery [90]

and elective PCI [20] patients, respectively, although none

of these studies were prospectively designed or powered to

investigate the effect of limb RIC on long-term clinical

outcomes (Table 1). Meybohm and Hausenloy presented

the forthcoming RIPHEART [69] and ERICCA [33] trials,

respectively, which have been powered to investigate

whether limb RIC can improve clinical outcomes at their

primary endpoint in the setting of cardiac bypass surgery

(Table 1). Furthermore, a research collaboration between

the UK (Hausenloy) and Denmark (Botker) will investigate

the effect of limb RIC on improving clinical outcomes in

STEMI patients treated by PPCI in the RIC-PPCI and

CONDI2 trials (Table 1). Depending on the results of these

large multi-center clinical outcome studies, there is the

potential for limb RIC to change clinical practice.

Summary and Conclusions

The 8th Biennial Hatter Cardiovascular Workshop pro-

vided a great opportunity to discuss recent developments in

the research field of limb RIC including: (1) new insights

into the mechanisms underlying limb RIC; (2) expansion of

non-cardiac organ protection; (3) potentially novel clinical

applications of limb RIC; and (4) an update of recently

published and future clinical outcomes studies. Huge

advances have clearly been made over the last few years

regarding the mechanisms underlying limb RIC and its

potential in the clinical setting, thereby enabling limb RIC

to make the journey from an intriguing experimental

observation to a clinical application for patient benefit.
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