42 research outputs found

    Plasmodium vivax but not Plasmodium falciparum blood-stage infection in humans is associated with the expansion of a CD8+ T cell population with cytotoxic potential

    Get PDF
    P. vivax and P. falciparum parasites display different tropism for host cells and induce very different clinical symptoms and pathology, suggesting that the immune responses required for protection may differ between these two species. However, no study has qualitatively compared the immune responses to P. falciparum or P. vivax in humans following primary exposure and infection. Here, we show that the two species differ in terms of the cellular immune responses elicited following primary infection. Specifically, P. vivax induced the expansion of a subset of CD8+ T cells expressing the activation marker CD38, whereas P. falciparum induced the expansion of CD38+ CD4+ T cells. The CD38+ CD8+ T cell population that expanded following P. vivax infection displayed greater cytotoxic potential compared to CD38- CD8+ T cells, and compared to CD38+ CD8+ T cells circulating during P. falciparum infection. We hypothesize that P. vivax infection leads to a stronger CD38+ CD8+ T cell activation because of its preferred tropism for MHC-I-expressing reticulocytes that, unlike mature red blood cells, can present antigen directly to CD8+ T cells. This study provides the first line of evidence to suggest an effector role for CD8+ T cells in P. vivax blood-stage immunity. It is also the first report of species-specific differences in the subset of T cells that are expanded following primary Plasmodium infection, suggesting that malaria vaccine development may require optimization according to the target parasite

    Publishing and sharing multi-dimensional image data with OMERO

    Get PDF
    Imaging data are used in the life and biomedical sciences to measure the molecular and structural composition and dynamics of cells, tissues, and organisms. Datasets range in size from megabytes to terabytes and usually contain a combination of binary pixel data and metadata that describe the acquisition process and any derived results. The OMERO image data management platform allows users to securely share image datasets according to specific permissions levels: data can be held privately, shared with a set of colleagues, or made available via a public URL. Users control access by assigning data to specific Groups with defined membership and access rights. OMERO’s Permission system supports simple data sharing in a lab, collaborative data analysis, and even teaching environments. OMERO software is open source and released by the OME Consortium at www.openmicroscopy.org

    Depauperate Avifauna in Plantations Compared to Forests and Exurban Areas

    Get PDF
    Native forests are shrinking worldwide, causing a loss of biological diversity. Our ability to prioritize forest conservation actions is hampered by a lack of information about the relative impacts of different types of forest loss on biodiversity. In particular, we lack rigorous comparisons of the effects of clearing forests for tree plantations and for human settlements, two leading causes of deforestation worldwide. We compared avian diversity in forests, plantations and exurban areas on the Cumberland Plateau, USA, an area of global importance for biodiversity. By combining field surveys with digital habitat databases, and then analyzing diversity at multiple scales, we found that plantations had lower diversity and fewer conservation priority species than did other habitats. Exurban areas had higher diversity than did native forests, but native forests outscored exurban areas for some measures of conservation priority. Overall therefore, pine plantations had impoverished avian communities relative to both native forests and to exurban areas. Thus, reports on the status of forests give misleading signals about biological diversity when they include plantations in their estimates of forest cover but exclude forested areas in which humans live. Likewise, forest conservation programs should downgrade incentives for plantations and should include settled areas within their purview

    Fumonisins affect the intestinal microbial homeostasis in broiler chickens, predisposing to necrotic enteritis

    Get PDF
    Fumonisins (FBs) are mycotoxins produced by Fusarium fungi. This study aimed to investigate the effect of these feed contaminants on the intestinal morphology and microbiota composition, and to evaluate whether FBs predispose broilers to necrotic enteritis. One-day-old broiler chicks were divided into a group fed a control diet, and a group fed a FBs contaminated diet (18.6 mg FB1+ FB2/kg feed). A significant increase in the plasma sphinganine/sphingosine ratio in the FBs-treated group (0.21 +/- 0.016) compared to the control (0.14 +/- 0.014) indicated disturbance of the sphingolipid biosynthesis. Furthermore, villus height and crypt depth of the ileum was significantly reduced by FBs. Denaturing gradient gel electrophoresis showed a shift in the microbiota composition in the ileum in the FBs group compared to the control. A reduced presence of low-GC containing operational taxonomic units in ileal digesta of birds exposed to FBs was demonstrated, and identified as a reduced abundance of Candidatus Savagella and Lactobaccilus spp. Quantification of total Clostridium perfringens in these ileal samples, previous to experimental infection, using cpa gene (alpha toxin) quantification by qPCR showed an increase in C. perfringens in chickens fed a FBs contaminated diet compared to control (7.5 +/- 0.30 versus 6.3 +/- 0.24 log10 copies/g intestinal content). After C. perfringens challenge, a higher percentage of birds developed subclinical necrotic enteritis in the group fed a FBs contaminated diet as compared to the control (44.9 +/- 2.22% versus 29.8 +/- 5.46%)

    A population of CD4hiCD38hi T cells correlates with disease severity in patients with acute malaria

    Get PDF
    Objective: CD4+ T cells are critical mediators of immunity to Plasmodium spp. infection, but their characteristics during malarial episodes and immunopathology in naturally infected adults are poorly defined. Flow cytometric analysis of PBMCs from patients with either P. falciparum or P. knowlesi malaria revealed a pronounced population of CD4+ T cells co-expressing very high levels of CD4 and CD38 we have termed CD4hiCD38hi T cells. We set out to gain insight into the function of these novel cells. Methods: CD4+ T cells from 18 patients with P. falciparum or P. knowlesi malaria were assessed by flow cytometry and sorted into populations of CD4hiCD38hi or CD4norm T cells. Gene expression in the sorted populations was assessed by qPCR and NanoString. Results: CD4hiCD38hi T cells expressed high levels of CD4 mRNA and canonical type 1 regulatory T-cell (TR1) genes including IL10, IFNG, LAG3 and HAVCR2 (TIM3), and other genes with relevance to cell migration and immunomodulation. These cells increased in proportion to malaria disease severity and were absent after parasite clearance with antimalarials. Conclusion: In naturally infected adults with acute malaria, a prominent population of type 1 regulatory T cells arises that can be defined by high co-expression of CD4 and CD38 (CD4hiCD38hi) and that correlates with disease severity in patients with falciparum malaria. This study provides fundamental insights into T-cell biology, including the first evidence that CD4 expression is modulated at the mRNA level. These findings have important implications for understanding the balance between immunity and immunopathology during malaria
    corecore