459 research outputs found

    Porewater methane transport within the gas vesicles of diurnally migrating Chaoborus spp.: An energetic advantage

    Get PDF
    We show that diurnally migrating Chaoborus sp. (phantom midge larvae), which can be highly abundant in eutrophic lakes with anoxic bottom, utilises sediment methane to inflate their tracheal sacs, which provides positive buoyancy to aid vertical migration. This process also effectively transports sediment methane bypassing oxidation to the upper water column, adding to the total methane outflux to the atmosphere

    Identification of Protein Networks Involved in the Disease Course of Experimental Autoimmune Encephalomyelitis, an Animal Model of Multiple Sclerosis

    Get PDF
    A more detailed insight into disease mechanisms of multiple sclerosis (MS) is crucial for the development of new and more effective therapies. MS is a chronic inflammatory autoimmune disease of the central nervous system. The aim of this study is to identify novel disease associated proteins involved in the development of inflammatory brain lesions, to help unravel underlying disease processes. Brainstem proteins were obtained from rats with MBP induced acute experimental autoimmune encephalomyelitis (EAE), a well characterized disease model of MS. Samples were collected at different time points: just before onset of symptoms, at the top of the disease and following recovery. To analyze changes in the brainstem proteome during the disease course, a quantitative proteomics study was performed using two-dimensional difference in-gel electrophoresis (2D-DIGE) followed by mass spectrometry. We identified 75 unique proteins in 92 spots with a significant abundance difference between the experimental groups. To find disease-related networks, these regulated proteins were mapped to existing biological networks by Ingenuity Pathway Analysis (IPA). The analysis revealed that 70% of these proteins have been described to take part in neurological disease. Furthermore, some focus networks were created by IPA. These networks suggest an integrated regulation of the identified proteins with the addition of some putative regulators. Post-synaptic density protein 95 (DLG4), a key player in neuronal signalling and calcium-activated potassium channel alpha 1 (KCNMA1), involved in neurotransmitter release, are 2 putative regulators connecting 64% of the identified proteins. Functional blocking of the KCNMA1 in macrophages was able to alter myelin phagocytosis, a disease mechanism highly involved in EAE and MS pathology. Quantitative analysis of differentially expressed brainstem proteins in an animal model of MS is a first step to identify disease-associated proteins and networks that warrant further research to study their actual contribution to disease pathology

    A Key Role for Neurotensin in Chronic-Stress-Induced Anxiety-Like Behavior in Rats

    Get PDF
    Accepted ManuscriptChronic stress is a major cause of anxiety disorders that can be reliably modeled preclinically, providing insight into alternative therapeutic targets for this mental health illness. Neuropeptides have been targeted in the past to no avail possibly due to our lack of understanding of their role in pathological models. In this study we use a rat model of chronic stress-induced anxiety-like behaviors and hypothesized that neuropeptidergic modulation of synaptic transmission would be altered in the bed nucleus of the stria terminalis (BNST), a brain region suspected to contribute to anxiety disorders. We use brain slice neurophysiology and behavioral pharmacology to compare the role of locally released endogenous neuropeptides on synaptic transmission in the oval (ov) BNST of non-stressed (NS) or chronic unpredictably stressed (CUS) rats. We found that in NS rats, post-synaptic depolarization induced the release of vesicular neurotensin (NT) and corticotropin-releasing factor (CRF) that co-acted to increase ovBNST inhibitory synaptic transmission in 59% of recorded neurons. CUS bolstered this potentiation (100% of recorded neurons) through an enhanced contribution of NT over CRF. In contrast, locally released opioid neuropeptides decreased ovBNST excitatory synaptic transmission in all recorded neurons, regardless of stress. Consistent with CUS-induced enhanced modulatory effects of NT, blockade of ovBNST NT receptors completely abolished stress-induced anxiety-like behaviors in the elevated plus maze paradigm. The role of NT has been largely unexplored in stress and our findings highlight its potential contribution to an important behavioral consequence of chronic stress, that is, exaggerated avoidance of open space in rats.CPN was funded by CIHR Vanier Graduate Scholarship (338319); APVS was funded by Fundação para a Ciência e Tecnologia (SFRH/BPD/52078/2013); ERH was funded by CIHR Postdoctoral Fellowship (MFE-123712); SA was funded by a Queen Elizabeth II Graduate Scholarship in Science and Technology; ÉCD was funded by the Canadian Institute of Health Research (MOP-25953)info:eu-repo/semantics/publishedVersio

    Different molecular patterns in glioblastoma multiforme subtypes upon recurrence

    Get PDF
    One of the hallmarks of glioblastoma is its inherent tendency to recur. At this point patients with relapsed GBM show a survival time of only few months. The molecular basis of the recurrence process in GBM is still poorly understood. The aim of the present study was to investigate the genetic profile of relapsed GBM compared to their respective primary tumors. We have included 20 paired GBMs. In all tumor samples, we have analyzed p53 and PTEN status by sequencing analysis, EGFR amplification by semiquantitative PCR and a wide-genome fingerprinting was performed by microsatellite analysis. Among primary GBM, we observed twelve type 2 GBM, four type 1 GBM and four further GBM showing neither p53 mutations nor EGFR amplification (non-type 1–non-type 2 GBM). Upon recurrence, we have detected two molecular patterns of tumor progression: GBM initially showing either type 1 or type 2 profiles conserved them at the time of relapse. In contrast, non-type 1–non-type 2 GBM acquired the typical pattern of type 2 GBM and harbor EGFR amplification without p53 mutation. New PTEN mutations upon relapse were only detected in type 2 GBM. Additional LOH were more frequently identified in relapses of type 2 GBM than in those showing the type 1 signature. Taken together, our results strongly suggest that recurrences of GBM may display two distinct pattern of accumulation of molecular alterations depending on the profile of the original tumor

    Lipid analogs reveal features critical for hemolysis and diminish granadaene mediated Group B Streptococcus infection

    Get PDF
    Although certain microbial lipids are toxins, the structural features important for cytotoxicity remain unknown. Increased functional understanding is essential for developing therapeutics against toxic microbial lipids. Group B Streptococci (GBS) are bacteria associated with preterm births, stillbirths, and severe infections in neonates and adults. GBS produce a pigmented, cytotoxic lipid, known as granadaene. Despite its importance to all manifestations of GBS disease, studies towards understanding granadaene’s toxic activity are hindered by its instability and insolubility in purified form. Here, we report the synthesis and screening of lipid derivatives inspired by granadaene, which reveal features central to toxin function, namely the polyene chain length. Furthermore, we show that vaccination with a non-toxic synthetic analog confers the production of antibodies that inhibit granadaene-mediated hemolysis ex vivo and diminish GBS infection in vivo. This work provides unique structural and functional insight into granadaene and a strategy to mitigate GBS infection, which will be relevant to other toxic lipids encoded by human pathogens.This work was supported by funding from the National Institutes of Health Grants R01AI112619, R01AI133976, R01AI100989, and R21AI125907 and seed funds from Seattle Childrens Research Institute to L.

    Late Replicating Domains Are Highly Recombining in Females but Have Low Male Recombination Rates: Implications for Isochore Evolution

    Get PDF
    In mammals sequences that are either late replicating or highly recombining have high rates of evolution at putatively neutral sites. As early replicating domains and highly recombining domains both tend to be GC rich we a priori expect these two variables to covary. If so, the relative contribution of either of these variables to the local neutral substitution rate might have been wrongly estimated owing to covariance with the other. Against our expectations, we find that sex-averaged recombination rates show little or no correlation with replication timing, suggesting that they are independent determinants of substitution rates. However, this result masks significant sex-specific complexity: late replicating domains tend to have high recombination rates in females but low recombination rates in males. That these trends are antagonistic explains why sex-averaged recombination is not correlated with replication timing. This unexpected result has several important implications. First, although both male and female recombination rates covary significantly with intronic substitution rates, the magnitude of this correlation is moderately underestimated for male recombination and slightly overestimated for female recombination, owing to covariance with replicating timing. Second, the result could explain why male recombination is strongly correlated with GC content but female recombination is not. If to explain the correlation between GC content and replication timing we suppose that late replication forces reduced GC content, then GC promotion by biased gene conversion during female recombination is partly countered by the antagonistic effect of later replicating sequence tending increase AT content. Indeed, the strength of the correlation between female recombination rate and local GC content is more than doubled by control for replication timing. Our results underpin the need to consider sex-specific recombination rates and potential covariates in analysis of GC content and rates of evolution
    corecore