20 research outputs found

    Semantic interrogation of a multi knowledge domain ontological model of tendinopathy identifies four strong candidate risk genes

    Get PDF
    Tendinopathy is a multifactorial syndrome characterised by tendon pain and thickening, and impaired performance during activity. Candidate gene association studies have identified genetic factors that contribute to intrinsic risk of developing tendinopathy upon exposure to extrinsic factors. Bioinformatics approaches that data-mine existing knowledge for biological relationships may assist with the identification of candidate genes. The aim of this study was to data-mine functional annotation of human genes and identify candidate genes by ontology-seeded queries capturing the features of tendinopathy. Our BioOntological Relationship Graph database (BORG) integrates multiple sources of genomic and biomedical knowledge into an on-disk semantic network where human genes and their orthologs in mouse and rat are central concepts mapped to ontology terms. The BORG was used to screen all human genes for potential links to tendinopathy. Following further prioritisation, four strong candidate genes (COL11A2, ELN, ITGB3, LOX) were identified. These genes are differentially expressed in tendinopathy, functionally linked to features of tendinopathy and previously implicated in other connective tissue diseases. In conclusion, cross-domain semantic integration of multiple sources of biomedical knowledge, and interrogation of phenotypes and gene functions associated with disease, may significantly increase the probability of identifying strong and unobvious candidate genes in genetic association studies

    Minimizing Injury and Maximizing Return to Play: Lessons from Engineered Ligaments

    No full text
    Musculoskeletal injuries account for more than 70% of time away from sports. One of the reasons for the high number of injuries and long return to play is that we have only a very basic understanding of how our training alters tendon and ligament (sinew) structure and function. Sinews are highly dense tissues that are difficult to characterize both in vivo and in vitro. Recently, engineered ligaments have been developed in vitro using cells from human anterior cruciate ligaments or hamstring tendons. These three-dimensional tissues can be grown in a laboratory, treated with agents thought to affect sinew physiology, and then mechanically tested to determine their function. Using these tissues, we have learned that sinews, like bone, quickly become refractory to an exercise stimulus, suggesting that short (<10 min) periods of activity with relatively long (6 h) periods of rest are best to train these tissues. The engineered sinews have also shown how estrogen decreases sinew function and that a factor released following intense exercise increases sinew collagen synthesis and function. Last, engineered sinews are being used to screen possible nutritional interventions that may benefit tendon or ligament function. Using the data derived from these tissue-engineered sinews, new nutritional and training regimes are being designed and tested with the goal of minimizing injury and accelerating return to play
    corecore