48 research outputs found

    Dilaton Quantum Cosmology with a Schrodinger-like equation

    Full text link
    A quantum cosmological model with radiation and a dilaton scalar field is analysed. The Wheeler-deWitt equation in the mini-superspace induces a Schr\"odinger equation, which can be solved. An explicit wavepacket is constructed for a particular choice of the ordering factor. A consistent solution is possible only when the scalar field is a phantom field. Moreover, although the wavepacket is time dependent, a Bohmian analysis allows to extract a bouncing behaviour for the scale factor.Comment: 14 pages, 3 figures in eps format. Minors corrections, new figure

    A four-dimensional {\Lambda}CDM-type cosmological model induced from higher dimensions using a kinematical constraint

    Full text link
    A class of cosmological solutions of higher dimensional Einstein field equations with the energy-momentum tensor of a homogeneous, isotropic fluid as the source are considered with an anisotropic metric that includes the direct sum of a 3-dimensional (physical, flat) external space metric and an n-dimensional (compact, flat) internal space metric. A simple kinematical constraint is postulated that correlates the expansion rates of the external and internal spaces in terms of a real parameter {\lambda}. A specific solution for which both the external and internal spaces expand at different rates is given analytically for n=3. Assuming that the internal dimensions were at Planck length scales when the external space starts with a Big Bang (t=0), they expand only 1.49 times and stay at Planck length scales even in the present age of the universe (13.7 Gyr). The effective four dimensional universe would exhibit a behavior consistent with our current understanding of the observed universe. It would start in a stiff fluid dominated phase and evolve through radiation dominated and pressureless matter dominated phases, eventually going into a de Sitter phase at late times.Comment: 12 pages, 8 figures; matches the version published in General Relativity and Gravitatio

    Black Holes in Gravity with Conformal Anomaly and Logarithmic Term in Black Hole Entropy

    Full text link
    We present a class of exact analytic and static, spherically symmetric black hole solutions in the semi-classical Einstein equations with Weyl anomaly. The solutions have two branches, one is asymptotically flat and the other asymptotically de Sitter. We study thermodynamic properties of the black hole solutions and find that there exists a logarithmic correction to the well-known Bekenstein-Hawking area entropy. The logarithmic term might come from non-local terms in the effective action of gravity theories. The appearance of the logarithmic term in the gravity side is quite important in the sense that with this term one is able to compare black hole entropy up to the subleading order, in the gravity side and in the microscopic statistical interpretation side.Comment: Revtex, 10 pages. v2: minor changes and to appear in JHE

    Breakdown of the adiabatic limit in low dimensional gapless systems

    Get PDF
    It is generally believed that a generic system can be reversibly transformed from one state into another by sufficiently slow change of parameters. A standard argument favoring this assertion is based on a possibility to expand the energy or the entropy of the system into the Taylor series in the ramp speed. Here we show that this argumentation is only valid in high enough dimensions and can break down in low-dimensional gapless systems. We identify three generic regimes of a system response to a slow ramp: (A) mean-field, (B) non-analytic, and (C) non-adiabatic. In the last regime the limits of the ramp speed going to zero and the system size going to infinity do not commute and the adiabatic process does not exist in the thermodynamic limit. We support our results by numerical simulations. Our findings can be relevant to condensed-matter, atomic physics, quantum computing, quantum optics, cosmology and others.Comment: 11 pages, 5 figures, to appear in Nature Physics (originally submitted version

    Effective theories of single field inflation when heavy fields matter

    Get PDF
    We compute the low energy effective field theory (EFT) expansion for single-field inflationary models that descend from a parent theory containing multiple other scalar fields. By assuming that all other degrees of freedom in the parent theory are sufficiently massive relative to the inflaton, it is possible to derive an EFT valid to arbitrary order in perturbations, provided certain generalized adiabaticity conditions are respected. These conditions permit a consistent low energy EFT description even when the inflaton deviates off its adiabatic minimum along its slowly rolling trajectory. By generalizing the formalism that identifies the adiabatic mode with the Goldstone boson of this spontaneously broken time translational symmetry prior to the integration of the heavy fields, we show that this invariance of the parent theory dictates the entire non-perturbative structure of the descendent EFT. The couplings of this theory can be written entirely in terms of the reduced speed of sound of adiabatic perturbations. The resulting operator expansion is distinguishable from that of other scenarios, such as standard single inflation or DBI inflation. In particular, we re-derive how certain operators can become transiently strongly coupled along the inflaton trajectory, consistent with slow-roll and the validity of the EFT expansion, imprinting features in the primordial power spectrum, and we deduce the relevant cubic operators that imply distinct signatures in the primordial bispectrum which may soon be constrained by observations.Comment: (v1) 25 pages, 1 figure; (v2) references added and typos corrected, to appear in Journal of High Energy Physic

    Kahler Moduli Inflation Revisited

    Get PDF
    We perform a detailed numerical analysis of inflationary solutions in Kahler moduli of type IIB flux compactifications. We show that there are inflationary solutions even when all the fields play an important role in the overall shape of the scalar potential. Moreover, there exists a direction of attraction for the inflationary trajectories that correspond to the constant volume direction. This basin of attraction enables the system to have an island of stability in the set of initial conditions. We provide explicit examples of these trajectories, compute the corresponding tilt of the density perturbations power spectrum and show that they provide a robust prediction of n_s approximately 0.96 for 60 e-folds of inflation.Comment: 27 pages, 9 figure

    Brane-World Gravity

    Get PDF
    The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+\textit{d}-dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the \textit{d} extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (∟\sim TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity "leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall--Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at \emph{low} energies -- the 5-dimensional Dvali--Gabadadze--Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.Comment: A major update of Living Reviews in Relativity 7:7 (2004) "Brane-World Gravity", 119 pages, 28 figures, the update contains new material on RS perturbations, including full numerical solutions of gravitational waves and scalar perturbations, on DGP models, and also on 6D models. A published version in Living Reviews in Relativit

    Effects of quantum gravity on the inflationary parameters and thermodynamics of the early universe

    Full text link
    The effects of generalized uncertainty principle (GUP) on the inflationary dynamics and the thermodynamics of the early universe are studied. Using the GUP approach, the tensorial and scalar density fluctuations in the inflation era are evaluated and compared with the standard case. We find a good agreement with the Wilkinson Microwave Anisotropy Probe data. Assuming that a quantum gas of scalar particles is confined within a thin layer near the apparent horizon of the Friedmann-Lemaitre-Robertson-Walker universe which satisfies the boundary condition, the number and entropy densities and the free energy arising form the quantum states are calculated using the GUP approach. A qualitative estimation for effects of the quantum gravity on all these thermodynamic quantities is introduced.Comment: 15 graghes, 7 figures with 17 eps graph

    Domain wall brane in squared curvature gravity

    Full text link
    We suggest a thick braneworld model in the squared curvature gravity theory. Despite the appearance of higher order derivatives, the localization of gravity and various bulk matter fields is shown to be possible. The existence of the normalizable gravitational zero mode indicates that our four-dimensional gravity is reproduced. In order to localize the chiral fermions on the brane, two types of coupling between the fermions and the brane forming scalar is introduced. The first coupling leads us to a Schr\"odinger equation with a volcano potential, and the other a P\"oschl-Teller potential. In both cases, the zero mode exists only for the left-hand fermions. Several massive KK states of the fermions can be trapped on the brane, either as resonant states or as bound states.Comment: 18 pages, 5 figures and 1 table, references added, improved version to be published in JHE
    corecore