146 research outputs found

    Insights into Eyestalk Ablation Mechanism to Induce Ovarian Maturation in the Black Tiger Shrimp

    Get PDF
    Eyestalk ablation is commonly practiced in crustacean to induce ovarian maturation in captivity. The molecular mechanism of the ablation has not been well understood, preventing a search for alternative measures to induce ovarian maturation in aquaculture. This is the first study to employ cDNA microarray to examine effects of eyestalk ablation at the transcriptomic level and pathway mapping analysis to identify potentially affected biological pathways in the black tiger shrimp (Penaeus monodon). Microarray analysis comparing between gene expression levels of ovaries from eyestalk-intact and eyestalk-ablated brooders revealed 682 differentially expressed transcripts. Based on Hierarchical clustering of gene expression patterns, Gene Ontology annotation, and relevant functions of these differentially expressed genes, several gene groups were further examined by pathway mapping analysis. Reverse-transcriptase quantitative PCR analysis for some representative transcripts confirmed microarray data. Known reproductive genes involved in vitellogenesis were dramatically increased during the ablation. Besides these transcripts expected to be induced by the ablation, transcripts whose functions involved in electron transfer mechanism, immune responses and calcium signal transduction were significantly altered following the ablation. Pathway mapping analysis revealed that the activation of gonadotropin-releasing hormone signaling, calcium signaling, and progesterone-mediated oocyte maturation pathways were putatively crucial to ovarian maturation induced by the ablation. These findings shed light on several possible molecular mechanisms of the eyestalk ablation effect and allow more focused investigation for an ultimate goal of finding alternative methods to replace the undesirable practice of the eyestalk ablation in the future

    MRI Study of Minor Physical Anomaly in Childhood Autism Implicates Aberrant Neurodevelopment in Infancy

    Get PDF
    Background: MPAs (minor physical anomalies) frequently occur in neurodevelopmental disorders because both face and brain are derived from neuroectoderm in the first trimester. Conventionally, MPAs are measured by evaluation of external appearance. Using MRI can help overcome inherent observer bias, facilitate multi-centre data acquisition, and explore how MPAs relate to brain dysmorphology in the same individual. Optical MPAs exhibit a tightly synchronized trajectory through fetal, postnatal and adult life. As head size enlarges with age, inter-orbital distance increases, and is mostly completed before age 3 years. We hypothesized that optical MPAs might afford a retrospective 'window' to early neurodevelopment; specifically, inter-orbital distance increase may represent a biomarker for early brain dysmaturation in autism. Methods: We recruited 91 children aged 7-16; 36 with an autism spectrum disorder and 55 age- and gender-matched typically developing controls. All children had normal IQ. Inter-orbital distance was measured on T1-weighted MRI scans. This value was entered into a voxel-by-voxel linear regression analysis with grey matter segmented from a bimodal MRI data-set. Age and total brain tissue volume were entered as covariates. Results: Intra-class coefficient for measurement of the inter-orbital distance was 0.95. Inter-orbital distance was significantly increased in the autism group (p = 0.03, 2-tailed). The autism group showed a significant relationship between inter-orbital distance grey matter volume of bilateral amygdalae extending to the unci and inferior temporal poles. Conclusions: Greater inter-orbital distance in the autism group compared with healthy controls is consistent with infant head size expansion in autism. Inter-orbital distance positively correlated with volume of medial temporal lobe structures, suggesting a link to "social brain" dysmorphology in the autism group. We suggest these data support the role of optical MPAs as a "fossil record" of early aberrant neurodevelopment, and potential biomarker for brain dysmaturation in autism. © 2011 Cheung et al.published_or_final_versio

    Comparative phylogeography of reef fishes from the Gulf of Aden to the Arabian Sea reveals two cryptic lineages

    Get PDF
    Arabian Sea is a heterogeneous region with high coral cover and warm stable conditions at the western end (Djibouti), in contrast to sparse coral cover, cooler temperatures, and upwelling at the eastern end (southern Oman). We tested for barriers to dispersal across this region (including the Gulf of Aden and Gulf of Oman), using mitochondrial DNA surveys of 11 reef fishes. Study species included seven taxa from six families with broad distributions across the Indo-Pacific and four species restricted to the Arabian Sea (and adjacent areas). Nine species showed no significant genetic partitions, indicating connectivity among contrasting environments spread across 2000 km. One butterflyfish (Chaetodon melannotus) and a snapper (Lutjanus kasmira) showed phylogenetic divergences of d = 0.008 and 0.048, respectively, possibly indicating cryptic species within these broadly distributed taxa. These genetic partitions at the western periphery of the Indo-Pacific reflect similar partitions recently discovered at the eastern periphery of the Indo-Pacific (the Hawaiian and the Marquesan Archipelagos), indicating that these disjunctive habitats at the ends of the range may serve as evolutionary incubators for coral reef organisms. © 2017 Springer-Verlag Berlin HeidelbergTh

    The benefit of directly comparing autism and schizophrenia for revealing mechanisms of social cognitive impairment

    Get PDF
    Autism and schizophrenia share a history of diagnostic conflation that was not definitively resolved until the publication of the DSM-III in 1980. Though now recognized as heterogeneous disorders with distinct developmental trajectories and dissociative features, much of the early nosological confusion stemmed from apparent overlap in certain areas of social dysfunction. In more recent years, separate but substantial literatures have accumulated for autism and schizophrenia demonstrating that abnormalities in social cognition directly contribute to the characteristic social deficits of both disorders. The current paper argues that direct comparison of social cognitive impairment can highlight shared and divergent mechanisms underlying pathways to social dysfunction, a process that can provide significant clinical benefit by informing the development of tailored treatment efforts. Thus, while the history of diagnostic conflation between autism and schizophrenia may have originated in similarities in social dysfunction, the goal of direct comparisons is not to conflate them once again but rather to reveal distinctions that illuminate disorder-specific mechanisms and pathways that contribute to social cognitive impairment

    Ecosystem Services from Small Forest Patches in Agricultural Landscapes

    Full text link

    Evolution of cuticular hydrocarbons in the hymenoptera : a meta-analysis

    Get PDF
    Chemical communication is the oldest form of communication, spreading across all organisms of life. In insects, cuticular hydrocarbons (CHC) function as the chemical recognition cues for the recognition of mates, species and nest-mates in social insects. Although much is known about the function of individual hydrocarbons and their biosynthesis, a phylogenetic overview is lacking. Here we review the CHC profiles of 241 species of hymenoptera, one of the largest and important insect orders, including the Symphyta (sawflies), the polyphyletic Parasitica (parasitoid wasps) and the Aculeata (wasps, bees and ants). We investigated whether these five major taxonomic groups differed in the presence and absence of CHC classes and whether the sociality of a species (solitarily vs. social) had an effect on CHC profile complexity. We found that the main CHC classes (i.e., n-alkanes, alkenes and methylalkanes) were all present early in the evolutionary history of the hymenoptera, as evidenced by their presence in ancient Symphyta and primitive Parasitica wasps. Throughout all groups within the Hymenoptera the more complex a CHC the fewer species that produce it, which may reflect the Occam's razor principle that insects’ only biosynthesize the most simple compound that fulfil its needs. Surprisingly there was no difference in the complexity of CHC profiles between social and solitary species, with some of the most complex CHC profiles belonging to the Parasitica. This profile complexity has been maintained in the ants, but some specialisation in biosynthetic pathways has led to a simplification of profiles in the aculeate wasps and bees. The absence of CHC classes in some taxa or species may be due to gene silencing or down-regulation rather than gene loss, as evidenced by sister species having highly divergent CHC profiles, and cannot be predicted by their phylogenetic history. The presence of highly complex CHC profiles prior to the vast radiation of the social hymenoptera indicates a 'spring-loaded' system where the diverse CHC needed for the complex communication systems of social insects, were already present for natural selection to act upon rather than evolve independently. This would greatly aid the multiple evolution of sociality in the Aculeata

    A guide to the Choquard equation

    Get PDF
    We survey old and recent results dealing with the existence and properties of solutions to the Choquard type equations Δu+V(x)u=(x(Nα)up)up2uin RN, -\Delta u + V(x)u = \bigl(|x|^{-(N-\alpha)} * |u|^p\bigr)|u|^{p - 2} u \qquad \text{in $\mathbb{R}^N$}, and some of its variants and extensions.Comment: 39 page

    Changes to the Fossil Record of Insects through Fifteen Years of Discovery

    Get PDF
    The first and last occurrences of hexapod families in the fossil record are compiled from publications up to end-2009. The major features of these data are compared with those of previous datasets (1993 and 1994). About a third of families (>400) are new to the fossil record since 1994, over half of the earlier, existing families have experienced changes in their known stratigraphic range and only about ten percent have unchanged ranges. Despite these significant additions to knowledge, the broad pattern of described richness through time remains similar, with described richness increasing steadily through geological history and a shift in dominant taxa, from Palaeoptera and Polyneoptera to Paraneoptera and Holometabola, after the Palaeozoic. However, after detrending, described richness is not well correlated with the earlier datasets, indicating significant changes in shorter-term patterns. There is reduced Palaeozoic richness, peaking at a different time, and a less pronounced Permian decline. A pronounced Triassic peak and decline is shown, and the plateau from the mid Early Cretaceous to the end of the period remains, albeit at substantially higher richness compared to earlier datasets. Origination and extinction rates are broadly similar to before, with a broad decline in both through time but episodic peaks, including end-Permian turnover. Origination more consistently exceeds extinction compared to previous datasets and exceptions are mainly in the Palaeozoic. These changes suggest that some inferences about causal mechanisms in insect macroevolution are likely to differ as well
    corecore