15 research outputs found

    Quantifying Intramolecular Binding in Multivalent Interactions: A Structure-Based Synergistic Study on Grb2-Sos1 Complex

    Get PDF
    Numerous signaling proteins use multivalent binding to increase the specificity and affinity of their interactions within the cell. Enhancement arises because the effective binding constant for multivalent binding is larger than the binding constants for each individual interaction. We seek to gain both qualitative and quantitative understanding of the multivalent interactions of an adaptor protein, growth factor receptor bound protein-2 (Grb2), containing two SH3 domains interacting with the nucleotide exchange factor son-of-sevenless 1 (Sos1) containing multiple polyproline motifs separated by flexible unstructured regions. Grb2 mediates the recruitment of Sos1 from the cytosol to the plasma membrane where it activates Ras by inducing the exchange of GDP for GTP. First, using a combination of evolutionary information and binding energy calculations, we predict an additional polyproline motif in Sos1 that binds to the SH3 domains of Grb2. This gives rise to a total of five polyproline motifs in Sos1 that are capable of binding to the two SH3 domains of Grb2. Then, using a hybrid method combining molecular dynamics simulations and polymer models, we estimate the enhancement in local concentration of a polyproline motif on Sos1 near an unbound SH3 domain of Grb2 when its other SH3 domain is bound to a different polyproline motif on Sos1. We show that the local concentration of the Sos1 motifs that a Grb2 SH3 domain experiences is approximately 1000 times greater than the cellular concentration of Sos1. Finally, we calculate the intramolecular equilibrium constants for the crosslinking of Grb2 on Sos1 and use thermodynamic modeling to calculate the stoichiometry. With these equilibrium constants, we are able to predict the distribution of complexes that form at physiological concentrations. We believe this is the first systematic analysis that combines sequence, structure, and thermodynamic analyses to determine the stoichiometry of the complexes that are dominant in the cellular environment

    Application of isothermal titration calorimetry in evaluation of proteinā€“nanoparticle interactions

    Get PDF
    Nanoparticles (NPs) offer a number of advantages over small organic molecules for controlling protein behaviour inside the cell. Protein binding to the surface of NPs depends on their surface characteristics, composition and method of preparation (Mandal et al. in J Hazard Mater 248ā€“249:238ā€“245, 2013). It is important to understand the binding affinities, stoichiometries and thermodynamical parameters of NPā€“protein interactions in order to see which interaction will have toxic and hazardous consequences and thus to prevent it. On the other side, because proteins are on the brink of stability, they may experience interactions with some types of NPs that are strong enough to cause denaturation or significantly change their conformations with concomitant loss of their biological function. Structural changes in the protein may cause exposure of new antigenic sites, ā€œcrypticā€ peptide epitopes, potentially triggering an immune response which can promote autoimmune disease (Treuel et al. in ACS Nano 8(1):503ā€“513, 2014). Mechanistic details of protein structural changes at NP surface have still remained elusive. Understanding the formation and persistence of the protein corona is critical issue; however, there are no many analytical methods which could provide detailed information about the NPā€“protein interaction characteristics and about protein structural changes caused by interactions with nanoparticles. The article reviews recent studies in NPā€“protein interactions research and application of isothermal titration calorimetry (ITC) in this research. The study of protein structural changes upon adsorption on nanoparticle surface and application of ITC in these studies is emphasized. The data illustrate that ITC is a versatile tool for evaluation of interactions between NPs and proteins. When coupled with other analytical methods, it is important analytical tool for monitoring conformational changes in proteins

    Cellular Active N-Hydroxyurea FEN1 Inhibitors Block Substrate Entry to the Active Site

    Get PDF
    The structure-specific nuclease human flap endonuclease-1 (hFEN1) plays a key role in DNA replication and repair and may be of interest as an oncology target. We present the first crystal structure of inhibitor-bound hFEN1 and show a cyclic N-hydroxyurea bound in the active site coordinated to two magnesium ions. Three such compounds had similar IC50 values but differed subtly in mode of action. One had comparable affinity for protein and proteinā€“ substrate complex and prevented reaction by binding to active site catalytic metal ions, blocking the unpairing of substrate DNA necessary for reaction. Other compounds were more competitive with substrate. Cellular thermal shift data showed engagement of both inhibitor types with hFEN1 in cells with activation of the DNA damage response evident upon treatment. However, cellular EC50s were significantly higher than in vitro inhibition constants and the implications of this for exploitation of hFEN1 as a drug target are discussed

    Characterisation of assembly and ubiquitylation by the RBCC motif of Trim5Ī±

    No full text
    The post-entry restriction factor Trim5Ī± blocks infection of retroviral pathogens shortly after the virus gains entry to the cell, preventing reverse transcription and integration into the host genome. Central to the mechanism of restriction is recognition of the lattice of capsid protein that forms the inner-shell of the retrovirus. To recognise this lattice, Trim5Ī± has been shown to assemble into a large hexagonal array, complementary to the capsid lattice. Structures of the Trim5Ī± coiled-coil region reveal an elongated anti-parallel dimer consistent with the edges of this array placing the Bbox domain at each end of the coiled-coil to facilitate assembly. To investigate the nature of this assembly we have designed and characterised a monomeric version of the TRIM RBCC motif with a truncated coiled-coil. Biophysical characterisation by SEC-MALLS, AUC, and SAXS demonstrate that this construct forms compact folded domain that assembles into a trimer that would support the formation of a hexagonal lattice. Furthermore, the RING domain and elements of the coiled-coil region are shown to contribute to assembly. Ubiquitylation assays demonstrate that this assembly increases ubiquitylation activity providing a link from recognition of the capsid lattice and assembly to the activation of innate immune signalling and restriction

    Recruitment and activation of PLCĪ³1 in T cells: a new insight into old domains

    No full text
    Engagement of the T-cell antigen receptor leads to recruitment of phospholipase CĪ³1 (PLCĪ³1) to the LAT-nucleated signaling complex and to PLCĪ³1 activation in a tyrosine phosphorylation-dependent manner. The mechanism of PLCĪ³1 recruitment and the role of PLCĪ³1 Src homology (SH) domains in this process remain incompletely understood. Using a combination of biochemical methods and real-time fluorescent imaging, we show here that the N-terminal SH2 domain of PLCĪ³1 is necessary but not sufficient for its recruitment. Either the SH3 or C-terminal SH2 domain of PLCĪ³1, with the participation of Vav1, c-Cbl and Slp76, are required to stabilize PLCĪ³1 recruitment. All three PLCĪ³1 SH domains are required for phosphorylation of PLCĪ³1 Y783, which is critical for enzyme activation. These novel findings entailed revision of the currently accepted model of PLCĪ³1 recruitment and activation in T lymphocytes
    corecore