11 research outputs found

    SPFC: a tool to improve water management and hay production in the Crau region

    Get PDF
    Correspondance: [email protected] ; UMR SYSTEM équipe CONSYSTThis article deals with the development and application of SPFC, a model used to improve water and grassland production (HC) in this region of France. This model is composed of two sub-models: an irrigation model and a crop model. As the fields are border irrigated, these two sub-models are coupled. The crop model simulates dry matter, Leaf Area Index (LAI) and soil water reserve (SWR) variations. LAI and SWR are both used for border model updating: SWR for the deficit of saturation required by the infiltration equation and LAI for the roughness coefficient n. After calibration and validation, SPFC is then used to identify realistic management strategies for the irrigation and production system at the plot level. By scheduling irrigation when SWR is 50% depleted, would result in a low Dry Matter DM production loss (around 10%), reduced labour (8 irrigation events instead of 11) and in significant water saving compared with farmers' practices, on the basis of an average climatic scenario. Furthermore, this improvement of irrigation efficiency is not incompatible with groundwater recharge used for the potable water supply of the region

    Estimating the furrow infiltration characteristic from a single advance point

    Get PDF
    Management and control of surface irrigation, in particular furrow irrigation, is limited by spatio-temporal soil infiltration variability as well as the high cost and time associated with collecting intensive field data for estimation of the infiltration characteristics. Recent work has proposed scaling the commonly used infiltration function by using a model infiltration curve and a single advance point for every other furrow in an irrigation event. Scaling factors were calculated for a series of furrows at two sites and at four points down the length of the field (0.25 L, 0.5 L, 0.75 L and L). Differences in the value of the scaling factor with distance were found to be a function of the shape of the advance curves. It is concluded that use of points early in the advance results in a substantial loss of accuracy and should be avoided. The scaling factor was also strongly correlated with the furrow-wetted perimeter suggesting that the scaling is an appropriate way of both predicting and accommodating the effect of the hydraulic variability

    Effect of water stress on growth, water consumption and yield of silage maize under flood irrigation in a semi-arid climate of Tadla (Morocco)

    No full text
    The field study of crop response to water stress is important to maximize yield and improve agricultural water use efficiency in areas where water resources are limited. This study was carried out during two growing periods in 2009 and 2010 in order to study the effect of water stress on crop growth, water consumption and dry matter yield of silage maize (Zea mays L.) supplied with flood irrigation under the semi-arid climate of Tadla in Morocco. Four to five irrigation treatments were applied at the rates of 100, 80, 60, 40 and 20% crop evapotranspiration (ETc) of maize. Soil water status, crop growth, leaf area index and above-ground biomass were measured. Results showed that irrigation deficit affected plant height growth, accelerated the senescence of the leaves and reduced the leaf area index. The maximum values of this parameter reached at flowering under the full irrigation treatment (100% ETc) were 5.1 and 4.8 in 2009 and 2010, respectively. Dry matter yields varied from 5.3 t·ha-1 under T4 (40% ETc) to 16.4 t·ha-1 under T1 (100% ETc) in 2009, whereas in 2010, it oscillated between 3.9 t·ha-1 under T5 (20% ETc) to 12.5 t·ha-1 under T1 (100% ETc). The establishment of the water budget by growth phase showed that the water use efficiency was higher during the linear phase of growth. Water use efficiency calculated at harvest varied between 2.99 kg·m-3 under T1 to 1.84 kg·m-3 under T5. The actual evapotranspiration under T1 (100% ETc) was 478 mm and 463 mm in 2009 and 2010, respectively. Using the averaged values of the two years, linear relationships were evaluated between dry matter yield and water consumption ETa. The yield response factor (Ky) for the silage maize for both growth seasons was 1.12. Under the Tadla semi-arid climate, it is proposed that silage maize should be irrigated as a priority before other crops with a Ky lower than 1.12. It is also recommended that, under limited water supplies, irrigation be applied during the linear phase of growth of this crop
    corecore