64,835 research outputs found

    The sedimentary geology, palaeoenvironments and ichnocoenoses of the Lower Devonian Horlick Formation, Ohio Range, Antarctica

    Get PDF
    Six ichnocoenoses in the clastic Devonian Horlick Formation (max. 56 m) confirm the nearshore marine character of eight of the nine lithofacies present. A basal sand sheet overlies a weathered granitic land surface (Kukri Erosion Surface) on Cambro - Ordovician granitoids. The level nature of this surface and the way it cuts across weathering profiles, suggests that the surface had been modified by marine processes prior to deposition. The basal sand sheet (Cross-bedded Sand sheet Lithofacies) contains tidal bundles, and at its top, abundant Monocraterion (Monocraterion Ichnocoenosis). The second sand sheet (Pleurothyrella Lithofacies) is heavily burrowed and shows alternating periods of sedimentation, burrowing, and erosion below wave base as the sea deepened (Catenarichnus Ichnocoenosis). With increasing transgression, finer sediments were deposited (Laminated Mudstone and Feldspathic lithofacies) in an unstable pattern of coarse sandbars and finer troughs (Cruziana-Rusophycus and Arenicolites ichnocoenoses) crossed by active longshore marine channels (Poorly-sorted Lithofacies, Spirophyton Ichnoocoenosis). Short-lived but powerful storms produced thin shelly tempestites (Shell-bed Lithofacies), whereas sporadic, very thin phosphate rich beds (Phosphatic Lithofacies) may have resulted from marine transgressions across the basin. The deepest water is probably represented by sediments of the Spirifer Lithofacies (Rosselia Ichnocoenosis). The Schulthess Lithofacies is regarded as fluvial, deposited in the lower reaches of a river draining a land area that lay towards Marie Byrd Land. Channels in the basal sand sheet indicate movement to the southwest, but orientation became more variable higher in the sequence. Four new measured sections are figured. The relationship of the Ohio Range to the rest of Antarctica during the Devonian is suggested.published_or_final_versio

    Influence of hyperhomocysteinemia on the cellular redox state - Impact on homocysteine-induced endothelial dysfunction

    Get PDF
    Hyperhomocysteinemia is an independent risk factor for the development of atherosclerosis. An increasing body of evidence has implicated oxidative stress as being contributory to homocysteines deleterious effects on the vasculature. Elevated levels of homocysteine may lead to increased generation of superoxide by a biochemical mechanism involving nitric oxide synthase, and, to a lesser extent, by an increase in the chemical oxidation of homocysteine and other aminothiols in the circulation. The resultant increase in superoxide levels is further amplified by homocysteinedependent alterations in the function of cellular antioxidant enzymes such as cellular glutathione peroxidase or extracellular superoxide dismutase. One direct clinical consequence of elevated vascular superoxide levels is the inactivation of the vasorelaxant messenger nitric oxide, leading to endothelial dysfunction. Scavenging of superoxide anion by either superoxide dismutase or 4,5-dihydroxybenzene 1,3-disulfonate (Tiron) reverses endothelial dysfunction in hyperhomocysteinemic animal models and in isolated aortic rings incubated with homocysteine. Similarly, homocysteineinduced endothelial dysfunction is also reversed by increasing the concentration of the endogenous antioxidant glutathione or overexpressing cellular glutathione peroxidase in animal models of mild hyperhomocysteinemia. Taken together, these findings strongly suggest that the adverse vascular effects of homocysteine are at least partly mediated by oxidative inactivation of nitric oxide

    Interplay of quantum and classical fluctuations near quantum critical points

    Full text link
    For a system near a quantum critical point (QCP), above its lower critical dimension dLd_L, there is in general a critical line of second order phase transitions that separates the broken symmetry phase at finite temperatures from the disordered phase. The phase transitions along this line are governed by thermal critical exponents that are different from those associated with the quantum critical point. We point out that, if the effective dimension of the QCP, deff=d+zd_{eff}=d+z (dd is the Euclidean dimension of the system and zz the dynamic quantum critical exponent) is above its upper critical dimension dCd_C, there is an intermingle of classical (thermal) and quantum critical fluctuations near the QCP. This is due to the breakdown of the generalized scaling relation ψ=νz\psi=\nu z between the shift exponent ψ\psi of the critical line and the crossover exponent νz\nu z, for d+z>dCd+z>d_C by a \textit{dangerous irrelevant interaction}. This phenomenon has clear experimental consequences, like the suppression of the amplitude of classical critical fluctuations near the line of finite temperature phase transitions as the critical temperature is reduced approaching the QCP.Comment: 10 pages, 6 figures, to be published in Brazilian Journal of Physic

    Chemical characteristics of air from different source regions during the second Pacific Exploratory Mission in the Tropics (PEM-Tropics B)

    Get PDF
    Ten-day backward trajectories are used to determine the origins of air parcels arriving at locations of airborne DC-8 chemical measurements during NASA's second Pacific Exploratory Mission in the Tropics B that was conducted during February-April 1999. Chemical data at sites where the trajectories had a common geographical origin and transport history are grouped together, and statistical measures of chemical characteristics are computed. Temporal changes in potential temperature are used to determine whether trajectories experienced a significant convective influence during the 10-day period. Trajectories describing the aged marine Southern Hemispheric category remain over the South Pacific Ocean during the 10-day period, and their corresponding chemical signature indicates very clean air. The category aged marine air in the Northern Hemisphere is found to be somewhat dirtier. Subdividing its trajectories based on the direction from which the air had traveled is found to be important in explaining the various chemical signatures. Similarly, long-range northern hemispheric trajectories passing over Asia are subdivided depending on whether they had followed a mostly zonal path, had originated near the Indian Ocean, or had originated near Central or South America and subsequently experienced a stratospheric influence. Results show that the chemical signatures of these subcategories are different from each other. The chemical signature of the southern hemispheric long-range transport category apparently exhibits the effects of pollution from Australia, southern Africa, and South America. Parcels originating over Central and northern South America are found to contain the strongest pollution signature of all categories, due to biomass burning and other sources. The convective category exhibits enhanced values of nitrogen species, probably due to emissions from lightning associated with the convection. Values of various species, including peroxides and acids, confirm that parcels were influenced by the removal of soluble gas and particle species due to precipitation. Finally, current results are compared with those from the first PEM-Tropics mission that was conducted in the same region during the southern hemispheric dry season (August-October 1996) when extensive biomass burning occurred. Results show that air samples during PEM-Tropics B are considerably cleaner than those of its dry season counterpart. Copyright 2001 by the American Geophysical Union

    Universally composable and customizable post-processing for practical quantum key distribution

    Get PDF
    In quantum key distribution (QKD), a secret key is generated between two distant parties by transmitting quantum states. Experimental measurements on the quantum states are then transformed to a secret key by classical post-processing. Here, we propose a construction framework in which QKD classical post-processing can be custom made. Though seemingly obvious, the concept of concatenating classical blocks to form a whole procedure does not automatically apply to the formation of a quantum cryptographic procedure since the security of the entire QKD procedure rests on the laws of quantum mechanics and classical blocks are originally designed and characterized without regard to any properties of these laws. Nevertheless, we justify such concept of concatenating classical blocks in constructing QKD classical post-processing procedures, along with a relation to the universal-composability-security parameter. Consequently, effects arising from an actual QKD experiment, such as those due to the finiteness of the number of signals used, can be dealt with by employing suitable post-processing blocks. Lastly, we use our proposed customizable framework to build a comprehensive generic recipe for classical post-processing that one can follow to derive a secret key from the measurement outcomes in an actual experiment. © 2010 Elsevier Ltd. All rights reserved.postprin

    Sensitivity analysis of circadian entrainment in the space of phase response curves

    Full text link
    Sensitivity analysis is a classical and fundamental tool to evaluate the role of a given parameter in a given system characteristic. Because the phase response curve is a fundamental input--output characteristic of oscillators, we developed a sensitivity analysis for oscillator models in the space of phase response curves. The proposed tool can be applied to high-dimensional oscillator models without facing the curse of dimensionality obstacle associated with numerical exploration of the parameter space. Application of this tool to a state-of-the-art model of circadian rhythms suggests that it can be useful and instrumental to biological investigations.Comment: 22 pages, 8 figures. Correction of a mistake in Definition 2.1. arXiv admin note: text overlap with arXiv:1206.414

    Impacts des activités humaines sur les ressources forestières dans les terroirs villageois des communes de Glazoué et de Dassa-Zoumè au centre-Bénin

    Get PDF
    L’étude des impacts des activités anthropiques sur les ressources naturelles a été conduite dans les terroirs villageois des communes de Dassa et de Glazoué. Elle a été réalisée par le biais de l’analyse diachronique du couvert végétal entre 1998 et 2006, des relevés floristiques et des enquêtes socio-économiques sur la nature des pressions exercées par la population sur le couvert végétal. L’analyse de la dynamique des unités d’occupation du sol révèle une régression des formations naturelles au profit des formations anthropiques (champs et jachères). Les formations naturelles qui représentaient 27% des terroirs villageois en 1998 n’ont occupé que 20% de ces terroirs en 2006 et ne représenteront que 8,1% en 2025, si le taux actuel de dégradation (0,45%) n’est pas freiné. Les peuplements ligneux des formations végétales actuelles sont caractérisés par une faible diversité spécifique. Leur densité est aussi faible (17-84 tiges/ha), sauf au niveau de la forêt claire/savane boisée où elle est de 276 tiges/ha. La surface terrière varie de 2,87 m2/ha au niveau des formations saxicoles à 11,08 m2/ha dans la forêt-galerie. Les principales causes de la dégradation du couvert végétal sont la carbonisation, le prélèvement de bois et l’agriculture.Mots clés: ressources naturelles, dégradation, bois, activités agricole

    Probiotic administration in congenital heart disease: a pilot study.

    Get PDF
    ObjectiveTo investigate the impact of probiotic Bifidobacterium longum ssp. infantis on the fecal microbiota and plasma cytokines in neonates with congenital heart disease.Study designSixteen infants with congenital heart disease were randomly assigned to receive either B. infantis (4.2 × 10(9) colony-forming units two times daily) or placebo for 8 weeks. Stool specimens from enrolled infants and from six term infants without heart disease were analyzed for microbial composition. Plasma cytokines were analyzed weekly in the infants with heart disease.ResultsHealthy control infants had increased total bacteria, total Bacteroidetes and total bifidobacteria compared to the infants with heart disease, but there were no significant differences between the placebo and probiotic groups. Plasma interleukin (IL)10, interferon (IFN)γ and IL1β levels were transiently higher in the probiotic group.ConclusionCongenital heart disease in infants is associated with dysbiosis. Probiotic B. infantis did not significantly alter the fecal microbiota. Alterations in plasma cytokines were found to be inconsistent

    Sensing the Danger Signals: cis-Jasmone Reduces Aphid Performance on Potato and Modulates the Magnitude of Released Volatiles

    Get PDF
    In response to herbivory, plants synthesize and release variable mixtures of herbivore-induced plant volatiles (HIPVs) as indirect defense traits. Such induction of indirect plant defense can also be “switched on” by certain chemicals known as priming agents. Preceding work showed that the plant HIPV cis-jasmone (CJ) induced the emission of aphid defense-related volatiles affecting their behavioral response. However, little is known about the extent to which CJ-induced volatiles impacts aphid performance. In the current study, we conducted growth assays of potato aphids, Macrosiphum euphorbiae, observing their reproduction, development, and survival on CJ-primed potato plants. Adult M. euphoribae produced fewer neonates on CJ-treated plants compared to untreated plants. The weight and survival of M. euphorbiae reproduced neonates were significantly lower on CJ-treated plants. Additionally, there was a significant reduction in mean relative growth rate (MRGR) of M. euphoribae nymphs that fed on CJ-treated plants. Furthermore, the intrinsic rate of population increase (rm) of M. euphoribae was significantly reduced on CJ-treated plants. Volatile analysis showed that CJ treatment significantly increased the emission of differently assigned volatile groups that have functional or biosynthetic characteristics, i.e., alcohols, benzenoids, homoterpenes, ketones, and sesquiterpenes at all sampling periods. Such enhanced volatile emissions were persistent over 7 days, suggesting a long-lasting effect of CJ defense priming. A negative correlation was found between volatile emission and MRGR of M. euphoribae. Principal component analysis (PCA) of data for the volatiles showed that (Z)-3-hexen-1-ol, α-pinene, (E)-ocimene, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), cis-jasmone, indole, and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT) were the main volatiles contributing to the emitted blends, suggesting possible involvement in the reduced performance of M. euphorbiae. Overall, our findings demonstrate that priming potato with CJ significantly results in elevated emission of known biologically active volatiles, which may negatively impact aphid settling and other performance traits on primed plants
    corecore