10 research outputs found

    Neglected Tropical Diseases in Sub-Saharan Africa: Review of Their Prevalence, Distribution, and Disease Burden

    Get PDF
    The neglected tropical diseases (NTDs) are the most common conditions affecting the poorest 500 million people living in sub-Saharan Africa (SSA), and together produce a burden of disease that may be equivalent to up to one-half of SSA's malaria disease burden and more than double that caused by tuberculosis. Approximately 85% of the NTD disease burden results from helminth infections. Hookworm infection occurs in almost half of SSA's poorest people, including 40–50 million school-aged children and 7 million pregnant women in whom it is a leading cause of anemia. Schistosomiasis is the second most prevalent NTD after hookworm (192 million cases), accounting for 93% of the world's number of cases and possibly associated with increased horizontal transmission of HIV/AIDS. Lymphatic filariasis (46–51 million cases) and onchocerciasis (37 million cases) are also widespread in SSA, each disease representing a significant cause of disability and reduction in the region's agricultural productivity. There is a dearth of information on Africa's non-helminth NTDs. The protozoan infections, human African trypanosomiasis and visceral leishmaniasis, affect almost 100,000 people, primarily in areas of conflict in SSA where they cause high mortality, and where trachoma is the most prevalent bacterial NTD (30 million cases). However, there are little or no data on some very important protozoan infections, e.g., amebiasis and toxoplasmosis; bacterial infections, e.g., typhoid fever and non-typhoidal salmonellosis, the tick-borne bacterial zoonoses, and non-tuberculosis mycobaterial infections; and arboviral infections. Thus, the overall burden of Africa's NTDs may be severely underestimated. A full assessment is an important step for disease control priorities, particularly in Nigeria and the Democratic Republic of Congo, where the greatest number of NTDs may occur

    Polymorphisms in TLR4 and TLR2 genes, cytokine production and survival in rural Ghana

    No full text
    Toll-like receptors (TLRs) are involved in the induction of an adequate immune response on infection. We hypothesized that genetic variation in TLR4 and TLR2 genes could influence this response and lead to variability in cytokine production and survival. We tested this hypothesis in 4292 participants who were followed up for all-cause mortality for 6 years and live under adverse environmental conditions in the Upper-East region of Ghana, where malaria is endemic. In 605 participants, tumor necrosis factor-α and interleukin-10 (IL10) production, after stimulation with lipopolysaccharide and zymosan, was measured. In addition, 34 single-nucleotide polymorphisms (SNPs) in TLR4 and 12 SNPs in TLR2 were genotyped and tested for association with cytokine production, malaria infection and mortality. In this comprehensive gene-wide approach, we identified novel SNPs in the TLR4 gene that influence cytokine production. From the analyzed SNPs, rs7860896 associated the strongest with IL10 production (P=0.0005). None of the SNPs in this study associated with malaria or overall mortality risks. In conclusion, we demonstrate that genetic variation within the TLR4 gene influences cytokine production capacity, but in an endemic area does not influence the susceptibility to malaria infection or mortality

    The influence of clan structure on the genetic variation in a single Ghanaian village

    Get PDF
    Socioeconomic and cultural factors are thought to have an important role in influencing human population genetic structure. To explain such population structure differences, most studies analyse genetic differences among widely dispersed human populations. In contrast, we have studied the genetic structure of an ethnic group occupying a single village in north-eastern Ghana. We found a markedly skewed male population substructure because of an almost complete lack of male gene flow among Bimoba clans in this village. We also observed a deep male substructure within one of the clans in this village. Among all males, we observed only three Y-single-nucleotide polymorphism (SNP) haplogroups: E1b1a*-M2, E1b1a7a*-U174 and E1b1a8a*-U209, P277, P278. In contrast to the marked Y-chromosomal substructure, mitochondrial DNA HVS-1 sequence variation and autosomal short-tandem repeats variation patterns indicate high genetic diversities and a virtually random female-mediated gene flow among clans. On the extreme micro-geographical scale of this single Bimoba village, correspondence between the Y-chromosome lineages and clan membership could be due to the combined effects of the strict patrilocal and patrilineal structure. If translated to larger geographic scales, our results would imply that the extent of variation in uniparentally inherited genetic markers, which are typically associated with historical migration on a continental scale, could equally likely be the result of many small and different cumulative effects of social factors such as clan membership that act at a local scale. Such local scale effects should therefore be considered in genetic studies, especially those that use uniparental markers, before making inferences about human history at large

    Boron-Doped Diamond and Graphitic Multiarrays for Neurotransmitter Sensing

    No full text

    Neuroendocrine regulation of thyrotropin-releasing hormone (TRH) in the tuberoinfundibular system

    No full text
    corecore