805 research outputs found

    On Space-Time Capacity Limits in Mobile and Delay Tolerant Networks

    Get PDF
    We investigate the fundamental capacity limits of space-time journeys of information in mobile and Delay Tolerant Networks (DTNs), where information is either transmitted or carried by mobile nodes, using store-carry-forward routing. We define the capacity of a journey (i.e., a path in space and time, from a source to a destination) as the maximum amount of data that can be transferred from the source to the destination in the given journey. Combining a stochastic model (conveying all possible journeys) and an analysis of the durations of the nodes' encounters, we study the properties of journeys that maximize the space-time information propagation capacity, in bit-meters per second. More specifically, we provide theoretical lower and upper bounds on the information propagation speed, as a function of the journey capacity. In the particular case of random way-point-like models (i.e., when nodes move for a distance of the order of the network domain size before changing direction), we show that, for relatively large journey capacities, the information propagation speed is of the same order as the mobile node speed. This implies that, surprisingly, in sparse but large-scale mobile DTNs, the space-time information propagation capacity in bit-meters per second remains proportional to the mobile node speed and to the size of the transported data bundles, when the bundles are relatively large. We also verify that all our analytical bounds are accurate in several simulation scenarios.Comment: Part of this work will be presented in "On Space-Time Capacity Limits in Mobile and Delay Tolerant Networks", P. Jacquet, B. Mans and G. Rodolakis, IEEE Infocom, 201

    Hamiltonian System Approach to Distributed Spectral Decomposition in Networks

    Get PDF
    Because of the significant increase in size and complexity of the networks, the distributed computation of eigenvalues and eigenvectors of graph matrices has become very challenging and yet it remains as important as before. In this paper we develop efficient distributed algorithms to detect, with higher resolution, closely situated eigenvalues and corresponding eigenvectors of symmetric graph matrices. We model the system of graph spectral computation as physical systems with Lagrangian and Hamiltonian dynamics. The spectrum of Laplacian matrix, in particular, is framed as a classical spring-mass system with Lagrangian dynamics. The spectrum of any general symmetric graph matrix turns out to have a simple connection with quantum systems and it can be thus formulated as a solution to a Schr\"odinger-type differential equation. Taking into account the higher resolution requirement in the spectrum computation and the related stability issues in the numerical solution of the underlying differential equation, we propose the application of symplectic integrators to the calculation of eigenspectrum. The effectiveness of the proposed techniques is demonstrated with numerical simulations on real-world networks of different sizes and complexities

    Non Unitary Random Walks

    Get PDF
    International audienceMotivated by the recent refutation of information loss paradox in black hole by Hawking, we investigate the new concept of {\it non unitary random walks}. In a non unitary random walk, we consider that the state 0, called the {\it black hole}, has a probability weight that decays exponentially in eλte^{-\lambda t} for some λ>0\lambda>0. This decaying probabilities affect the probability weight of the other states, so that the the apparent transition probabilities are affected by a repulsion factor that depends on the factors λ\lambda and black hole lifetime tt. If λ\lambda is large enough, then the resulting transition probabilities correspond to a neutral random walk. We generalize to {\it non unitary gravitational walks} where the transition probabilities are function of the distance to the black hole. We show the surprising result that the black hole remains attractive below a certain distance and becomes repulsive with an exactly reversed random walk beyond this distance. This effect has interesting analogy with so-called dark energy effect in astrophysics

    Realistic wireless network model with explicit capacity evaluation

    Get PDF
    We consider a realistic model of wireless network where nodes are di\ spatched in an infinite map with uniform distribution. Signal decays with distance according to attenuation factor α\alpha. At any time we assume that the distribution of emitters is λ\lambda per square unit area. From the explicit formula of the laplace transform of received signal we derive the explicit formula for the info\ rmation rate received by a random node which is α2(log2)1\frac{\alpha}{2}(\log 2)^{-1} per Hertz. We generalize to any-dimension network maps

    ThermoElectric Transport Properties of a Chain ofQuantum Dots with Self-Consistent Reservoirs

    Get PDF
    We introduce a model for charge and heat transport based on the Landauer-Büttiker scattering approach. The system consists of a chain of N quantum dots, each of them being coupled to a particle reservoir. Additionally, the left and right ends of the chain are coupled to two particle reservoirs. All these reservoirs are independent and can be described by any of the standard physical distributions: Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein. In the linear response regime, and under some assumptions, we first describe the general transport properties of the system. Then we impose the self-consistency condition, i.e. we fix the boundary values (T L,μ L) and (T R,μ R), and adjust the parameters (T i ,μ i ), for i=1, ,N, so that the net average electric and heat currents into all the intermediate reservoirs vanish. This condition leads to expressions for the temperature and chemical potential profiles along the system, which turn out to be independent of the distribution describing the reservoirs. We also determine the average electric and heat currents flowing through the system and present some numerical results, using random matrix theory, showing that these currents are typically governed by Ohm and Fourier law
    corecore