227 research outputs found

    Tumor Suppression by RNA from C/EBPβ 3′UTR through the Inhibition of Protein Kinase Cε Activity

    Get PDF
    BACKGROUND: Since the end of last century, RNAs from the 3'untranslated region (3'UTR) of several eukaryotic mRNAs have been found to exert tumor suppression activity when introduced into malignant cells independent of their whole mRNAs. In this study, we sought to determine the molecular mechanism of the tumor suppression activity of a short RNA from 3'UTR of C/EBPβ mRΝΑ (C/EBPβ 3'UTR RNA) in human hepatocarcinoma cells SMMC-7721. METHODOLOGY/PRINCIPAL FINDINGS: By using Western blotting, immunocytochemistry, molecular beacon, confocal microscopy, protein kinase inhibitors and in vitro kinase assays, we found that, in the C/EBPβ 3'UTR-transfectant cells of SMMC-7721, the overexpressed C/EBPβ 3'UTR RNA induced reorganization of keratin 18 by binding to this keratin; that the C/EBPβ 3'UTR RNA also reduced phosphorylation and expression of keratin 18; and that the enzyme responsible for phosphorylating keratin 18 is protein kinase Cε. We then found that the C/EBPβ 3'UTR RNA directly inhibited the phosphorylating activity of protein kinase Cε; and that C/EBPβ 3'UTR RNA specifically bound with the protein kinase Cε-keratin 18 conjugate. CONCLUSION/SIGNIFICANCE: Together, these facts suggest that the tumor suppression in SMMC-7721 by C/EBPβ 3'UTR RNA is due to the inhibition of protein kinase Cε activity through direct physical interaction between C/EBPβ 3'UTR RNA and protein kinase Cε. These facts indicate that the 3'UTR of some eukaryotic mRNAs may function as regulators for genes other than their own

    Dephosphorylated NSSR1 Is Induced by Androgen in Mouse Epididymis and Phosphorylated NSSR1 Is Increased during Sperm Maturation

    Get PDF
    NSSR1 (Neural salient serine/arginine rich protein 1, alternatively SRp38) is a newly identified RNA splicing factor and predominantly expressed in neural tissues. Here, by Western blot analysis and immunofluorescent staining, we showed that the expression of dephosphorylated NSSR1 increased significantly during development of the caput epididymis. In adult mice, phosphorylated NSSR1 was mainly expressed in the apical side of epithelial cells, and dephosphorylated NSSR1 in caput epididymis was upregulated in a testosterone dependent manner. In addition, subcellular immunoreactive distribution of NSSR1 varied in different regions of the epididymis. With respect to the sperm, phosphorylated NSSR1 was detected in the mid-piece of the tail as well as the acrosome. Furthermore, NSSR1 was released from the sperm head during the capacitation and acrosome reaction. These findings for the first time provide the evidence for the potential roles of NSSR1 in sperm maturation and fertilization

    VASP: A Volumetric Analysis of Surface Properties Yields Insights into Protein-Ligand Binding Specificity

    Get PDF
    Many algorithms that compare protein structures can reveal similarities that suggest related biological functions, even at great evolutionary distances. Proteins with related function often exhibit differences in binding specificity, but few algorithms identify structural variations that effect specificity. To address this problem, we describe the Volumetric Analysis of Surface Properties (VASP), a novel volumetric analysis tool for the comparison of binding sites in aligned protein structures. VASP uses solid volumes to represent protein shape and the shape of surface cavities, clefts and tunnels that are defined with other methods. Our approach, inspired by techniques from constructive solid geometry, enables the isolation of volumetrically conserved and variable regions within three dimensionally superposed volumes. We applied VASP to compute a comparative volumetric analysis of the ligand binding sites formed by members of the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains and the serine proteases. Within both families, VASP isolated individual amino acids that create structural differences between ligand binding cavities that are known to influence differences in binding specificity. Also, VASP isolated cavity subregions that differ between ligand binding cavities which are essential for differences in binding specificity. As such, VASP should prove a valuable tool in the study of protein-ligand binding specificity

    The Fragmented Mitochondrial Ribosomal RNAs of Plasmodium falciparum

    Get PDF
    The mitochondrial genome in the human malaria parasite Plasmodium falciparum is most unusual. Over half the genome is composed of the genes for three classic mitochondrial proteins: cytochrome oxidase subunits I and III and apocytochrome b. The remainder encodes numerous small RNAs, ranging in size from 23 to 190 nt. Previous analysis revealed that some of these transcripts have significant sequence identity with highly conserved regions of large and small subunit rRNAs, and can form the expected secondary structures. However, these rRNA fragments are not encoded in linear order; instead, they are intermixed with one another and the protein coding genes, and are coded on both strands of the genome. This unorthodox arrangement hindered the identification of transcripts corresponding to other regions of rRNA that are highly conserved and/or are known to participate directly in protein synthesis.The identification of 14 additional small mitochondrial transcripts from P. falciparum and the assignment of 27 small RNAs (12 SSU RNAs totaling 804 nt, 15 LSU RNAs totaling 1233 nt) to specific regions of rRNA are supported by multiple lines of evidence. The regions now represented are highly similar to those of the small but contiguous mitochondrial rRNAs of Caenorhabditis elegans. The P. falciparum rRNA fragments cluster on the interfaces of the two ribosomal subunits in the three-dimensional structure of the ribosome.All of the rRNA fragments are now presumed to have been identified with experimental methods, and nearly all of these have been mapped onto the SSU and LSU rRNAs. Conversely, all regions of the rRNAs that are known to be directly associated with protein synthesis have been identified in the P. falciparum mitochondrial genome and RNA transcripts. The fragmentation of the rRNA in the P. falciparum mitochondrion is the most extreme example of any rRNA fragmentation discovered

    Pre-Clinical Evaluation of a Replication-Competent Recombinant Adenovirus Serotype 4 Vaccine Expressing Influenza H5 Hemagglutinin

    Get PDF
    Influenza virus remains a significant health and social concern in part because of newly emerging strains, such as avian H5N1 virus. We have developed a prototype H5N1 vaccine using a recombinant, replication-competent Adenovirus serotype 4 (Ad4) vector, derived from the U.S. military Ad4 vaccine strain, to express the hemagglutinin (HA) gene from A/Vietnam/1194/2004 influenza virus (Ad4-H5-Vtn). Our hypothesis is that a mucosally-delivered replicating Ad4-H5-Vtn recombinant vector will be safe and induce protective immunity against H5N1 influenza virus infection and disease pathogenesis.The Ad4-H5-Vtn vaccine was designed with a partial deletion of the E3 region of Ad4 to accommodate the influenza HA gene. Replication and growth kinetics of the vaccine virus in multiple human cell lines indicated that the vaccine virus is attenuated relative to the wild type virus. Expression of the HA transgene in infected cells was documented by flow cytometry, western blot analysis and induction of HA-specific antibody and cellular immune responses in mice. Of particular note, mice immunized intranasally with the Ad4-H5-Vtn vaccine were protected against lethal H5N1 reassortant viral challenge even in the presence of pre-existing immunity to the Ad4 wild type virus.Several non-clinical attributes of this vaccine including safety, induction of HA-specific humoral and cellular immunity, and efficacy were demonstrated using an animal model to support Phase 1 clinical trial evaluation of this new vaccine

    Drosophila Ribosomal Protein Mutants Control Tissue Growth Non-Autonomously via Effects on the Prothoracic Gland and Ecdysone

    Get PDF
    The ribosome is critical for all aspects of cell growth due to its essential role in protein synthesis. Paradoxically, many Ribosomal proteins (Rps) act as tumour suppressors in Drosophila and vertebrates. To examine how reductions in Rps could lead to tissue overgrowth, we took advantage of the observation that an RpS6 mutant dominantly suppresses the small rough eye phenotype in a cyclin E hypomorphic mutant (cycEJP). We demonstrated that the suppression of cycEJP by the RpS6 mutant is not a consequence of restoring CycE protein levels or activity in the eye imaginal tissue. Rather, the use of UAS-RpS6 RNAi transgenics revealed that the suppression of cycEJP is exerted via a mechanism extrinsic to the eye, whereby reduced Rp levels in the prothoracic gland decreases the activity of ecdysone, the steroid hormone, delaying developmental timing and hence allowing time for tissue and organ overgrowth. These data provide for the first time a rationale to explain the counter-intuitive organ overgrowth phenotypes observed for certain members of the Minute class of Drosophila Rp mutants. They also demonstrate how Rp mutants can affect growth and development cell non-autonomously

    Post-transcriptional control during chronic inflammation and cancer: a focus on AU-rich elements

    Get PDF
    A considerable number of genes that code for AU-rich mRNAs including cytokines, growth factors, transcriptional factors, and certain receptors are involved in both chronic inflammation and cancer. Overexpression of these genes is affected by aberrations or by prolonged activation of several signaling pathways. AU-rich elements (ARE) are important cis-acting short sequences in the 3′UTR that mediate recognition of an array of RNA-binding proteins and affect mRNA stability and translation. This review addresses the cellular and molecular mechanisms that are common between inflammation and cancer and that also govern ARE-mediated post-transcriptional control. The first part examines the role of the ARE-genes in inflammation and cancer and sequence characteristics of AU-rich elements. The second part addresses the common signaling pathways in inflammation and cancer that regulate the ARE-mediated pathways and how their deregulations affect ARE-gene regulation and disease outcome
    corecore