391 research outputs found

    Numerical evidence for the Maldacena conjecture in two-dimensional N=(8,8) super Yang-Mills theory

    Full text link
    The N=(8,8) super Yang-Mills theory in 1+1 dimensions is solved at strong coupling to directly confirm the predictions of supergravity at weak coupling. The calculations are done in the large-N_c approximation using Supersymmetric Discrete Light-Cone Quantization. The stress-energy correlator is obtained as a function of the separation r; for intermediate values of r, the correlator behaves in a manner consistent with the 1/r^5 behavior predicted by weak-coupling supergravity.Comment: 6 pages, 3 figures; requires espcrc2.sty; to appear in the proceedings of the Workshop on Light-Cone QCD and Nonperturbative Hadron Physics, Cairns, Australia, July 7-15, 200

    Numerical Simulations of N=(1,1) SYM{1+1} with Large Supersymmetry Breaking

    Get PDF
    We consider the N=(1,1)N=(1,1) SYM theory that is obtained by dimensionally reducing SYM theory in 2+1 dimensions to 1+1 dimensions and discuss soft supersymmetry breaking. We discuss the numerical simulation of this theory using SDLCQ when either the boson or the fermion has a large mass. We compare our result to the pure adjoint fermion theory and pure adjoint boson DLCQ calculations of Klebanov, Demeterfi, and Bhanot and of Kutasov. With a large boson mass we find that it is necessary to add additional operators to the theory to obtain sensible results. When a large fermion mass is added to the theory we find that it is not necessary to add operators to obtain a sensible theory. The theory of the adjoint boson is a theory that has stringy bound states similar to the full SYM theory. We also discuss another theory of adjoint bosons with a spectrum similar to that obtained by Klebanov, Demeterfi, and Bhanot.Comment: 12 pages, 4 figure

    Anomalously light states in super-Yang-Mills Chern-Simons theory

    Get PDF
    Inspired by our previous finding that supersymmetric Yang-Mills-Chern-Simons (SYM-CS) theory dimensionally reduced to 1+1 dimensions possesses approximate Bogomol'nyi-Prasad-Sommerfield (BPS) states, we study the analogous phenomenon in the three-dimensional theory. Approximate BPS states in two dimensions have masses which are nearly independent of the Yang-Mills coupling and proportional to their average number of partons. These states are a reflection of the exactly massless BPS states of the underlying pure SYM theory. In three dimensions we find that this mechanism leads to anomalously light bound states. While the mass scale is still proportional to the average number of partons times the square of the CS coupling, the average number of partons in these bound states changes with the Yang-Mills coupling. Therefore, the masses of these states are not independent of the coupling. Our numerical calculations are done using supersymmetric discrete light-cone quantization (SDLCQ).Comment: 14 pages, 3 figures, LaTe

    Properties of the Bound States of Super-Yang-Mills-Chern-Simons Theory

    Get PDF
    We apply supersymmetric discrete light-cone quantization (SDLCQ) to the study of supersymmetric Yang-Mills-Chern-Simons (SYM-CS) theory on R x S^1 x S^1. One of the compact directions is chosen to be light-like and the other to be space-like. Since the SDLCQ regularization explicitly preserves supersymmetry, this theory is totally finite, and thus we can solve for bound-state wave functions and masses numerically without renormalizing. The Chern-Simons term is introduced here to provide masses for the particles while remaining totally within a supersymmetric context. We examine the free, weak and strong-coupling spectrum. The transverse direction is discussed as a model for universal extra dimensions in the gauge sector. The wave functions are used to calculate the structure functions of the lowest mass states. We discuss the properties of Kaluza-Klein states and focus on how they appear at strong coupling. We also discuss a set of anomalously light states which are reflections of the exact Bogomol'nyi-Prasad-Sommerfield states of the underlying SYM theory.Comment: 20pp., 21 figure

    Simulation of Dimensionally Reduced SYM-Chern-Simons Theory

    Get PDF
    A supersymmetric formulation of a three-dimensional SYM-Chern-Simons theory using light-cone quantization is presented, and the supercharges are calculated in light-cone gauge. The theory is dimensionally reduced by requiring all fields to be independent of the transverse dimension. The result is a non-trivial two-dimensional supersymmetric theory with an adjoint scalar and an adjoint fermion. We perform a numerical simulation of this SYM-Chern-Simons theory in 1+1 dimensions using SDLCQ (Supersymmetric Discrete Light-Cone Quantization). We find that the character of the bound states of this theory is very different from previously considered two-dimensional supersymmetric gauge theories. The low-energy bound states of this theory are very ``QCD-like.'' The wave functions of some of the low mass states have a striking valence structure. We present the valence and sea parton structure functions of these states. In addition, we identify BPS-like states which are almost independent of the coupling. Their masses are proportional to their parton number in the large-coupling limit.Comment: 18pp. 7 figures, uses REVTe

    Improved results for N=(2,2) super Yang-Mills theory using supersymmetric discrete light-cone quantization

    Full text link
    We consider the (1+1)-dimensional N=(2,2){\cal N}=(2,2) super Yang--Mills theory which is obtained by dimensionally reducing N=1{\cal N}=1 super Yang--Mills theory in four dimension to two dimensions. We do our calculations in the large-NcN_c approximation using Supersymmetric Discrete Light Cone Quantization. The objective is to calculate quantities that might be investigated by researchers using other numerical methods. We present a precision study of the low-mass spectrum and the stress-energy correlator . We find that the mass gap of this theory closes as the numerical resolution goes to infinity and that the correlator in the intermediate rr region behaves like r4.75r^{-4.75}.Comment: 18 pages, 8 figure

    Towards a SDLCQ test of the Maldacena Conjecture

    Get PDF
    We consider the Maldacena conjecture applied to the near horizon geometry of a D1-brane in the supergravity approximation and present numerical results of a test of the conjecture against the boundary field theory calculation using DLCQ. We previously calculated the two-point function of the stress-energy tensor on the supergravity side; the methods of Gubser, Klebanov, Polyakov, and Witten were used. On the field theory side, we derived an explicit expression for the two-point function in terms of data that may be extracted from the supersymmetric discrete light cone quantization (SDLCQ) calculation at a given harmonic resolution. This yielded a well defined numerical algorithm for computing the two-point function. For the supersymmetric Yang-Mills theory with 16 supercharges that arises in the Maldacena conjecture, the algorithm is perfectly well defined; however, the size of the numerical computation prevented us from obtaining a numerical check of the conjecture. We now present numerical results with approximately 1000 times as many states as we previously considered. These results support the Maldacena conjecture and are within 101510-15% of the predicted numerical results in some regions. Our results are still not sufficient to demonstrate convergence, and, therefore, cannot be considered to a numerical proof of the conjecture. We present a method for using a ``flavor'' symmetry to greatly reduce the size of the basis and discuss a numerical method that we use which is particularly well suited for this type of matrix element calculation.Comment: 10 pages, 1 figur

    Application of Pauli-Villars regularization and discretized light-cone quantization to a single-fermion truncation of Yukawa theory

    Get PDF
    We apply Pauli-Villars regularization and discretized light-cone quantization to the nonperturbative solution of (3+1)-dimensional Yukawa theory in a single-fermion truncation. Three heavy scalars, including two with negative norm, are used to regulate the theory. The matrix eigenvalue problem is solved for the lowest-mass state with use of a new, indefinite-metric Lanczos algorithm. Various observables are extracted from the wave functions, including average multiplicities and average momenta of constituents, structure functions, and a form factor slope.Comment: 21 pages, 7 figures, RevTeX; published version: more extensive data in the tables of v

    A nonperturbative calculation of the electron's magnetic moment

    Full text link
    In principle, the complete spectrum and bound-state wave functions of a quantum field theory can be determined by finding the eigenvalues and eigensolutions of its light-cone Hamiltonian. One of the challenges in obtaining nonperturbative solutions for gauge theories such as QCD using light-cone Hamiltonian methods is to renormalize the theory while preserving Lorentz symmetries and gauge invariance. For example, the truncation of the light-cone Fock space leads to uncompensated ultraviolet divergences. We present two methods for consistently regularizing light-cone-quantized gauge theories in Feynman and light-cone gauges: (1) the introduction of a spectrum of Pauli-Villars fields which produces a finite theory while preserving Lorentz invariance; (2) the augmentation of the gauge-theory Lagrangian with higher derivatives. In the latter case, which is applicable to light-cone gauge (A^+ = 0), the A^- component of the gauge field is maintained as an independent degree of freedom rather than a constraint. Finite-mass Pauli-Villars regulators can also be used to compensate for neglected higher Fock states. As a test case, we apply these regularization procedures to an approximate nonperturbative computation of the anomalous magnetic moment of the electron in QED as a first attempt to meet Feynman's famous challenge.Comment: 35 pages, elsart.cls, 3 figure

    Casimir energy of a compact cylinder under the condition ϵμ=c2\epsilon\mu = c^{-2}

    Full text link
    The Casimir energy of an infinite compact cylinder placed in a uniform unbounded medium is investigated under the continuity condition for the light velocity when crossing the interface. As a characteristic parameter in the problem the ratio ξ2=(ϵ1ϵ2)2/(ϵ1+ϵ2)2=(μ1μ2)2/(μ1+μ2)21\xi^2=(\epsilon_1-\epsilon_2)^2/ (\epsilon_1+\epsilon_2)^-2 = (\mu_1-\mu_2)^2/(\mu_1+ \mu_2)^2 \le 1 is used, where ϵ1\epsilon_1 and μ1\mu_1 are, respectively, the permittivity and permeability of the material making up the cylinder and ϵ2\epsilon_2 and μ2\mu_2 are those for the surrounding medium. It is shown that the expansion of the Casimir energy in powers of this parameter begins with the term proportional to ξ4\xi^4. The explicit formulas permitting us to find numerically the Casimir energy for any fixed value of ξ2\xi^2 are obtained. Unlike a compact ball with the same properties of the materials, the Casimir forces in the problem under consideration are attractive. The implication of the calculated Casimir energy in the flux tube model of confinement is briefly discussed.Comment: REVTeX, 12 pages, 1 figure in a separate fig1.eps file, 1 table; minor corrections in English and misprints; version to be published in Phys. Rev. D1
    corecore