71 research outputs found

    Helium-cluster decay widths of molecular states in beryllium and carbon isotopes

    Get PDF
    The α\alpha particle and 6^6He emissions from possible molecular states in beryllium and carbon isotopes have been studied using a mean-field-type cluster potential. Calculations can reproduce well the α\alpha-decay widths of excited states in 8^{8}Be, 12^{12}C and 20^{20}Ne. For the nucleus 10^{10}Be, we discussed the α\alpha-decay widths with different shapes or decay modes, in order to understand the very different decay widths of two excited states. The widths of 6^{6}He decay from 12^{12}Be and α\alpha decays from 13,14^{13,14}C are predicted, which could be useful for future experiments.Comment: 12 pgaes, 1 figur

    Knowledge politics and new converging technologies: a social epistemological perspective

    Get PDF
    The “new converging technologies” refers to the prospect of advancing the human condition by the integrated study and application of nanotechnology, biotechnology, information technology and the cognitive sciences - or “NBIC”. In recent years, it has loomed large, albeit with somewhat different emphases, in national science policy agendas throughout the world. This article considers the political and intellectual sources - both historical and contemporary - of the converging technologies agenda. Underlying it is a fluid conception of humanity that is captured by the ethically challenging notion of “enhancing evolution”

    Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology

    Get PDF
    notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations

    A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers

    Get PDF
    Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10−8, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers

    Digital image correlation: displacement accuracy estimation

    No full text
    The aim of this collaborative work is to study the uncertainties associated with Digital Image Correlation techniques (DIC). More specifically, the link between displacement uncertainties and several correlation parameters chosen by the user and relative to the image analysis software and several image characteristics like speckle size and image noise is emphasized. A previous work [1] has been done for situations with spatially fluctuating displacement fields which dealt with mismatch error linked to the discrepancy between the adopted shape function and the real displacement field in the subset. This present work is focused on the ultimate error regime. To ensure that there is no mismatch error, synthetic images of plane rigid body translation have been analysed. DIC softwares developed by or used in the French community were used to study a large number of settings. The first observations are: (a) bias amplitude is almost always insensitive to the subset size, (b) DIC formulations can be split up into two families. For the first one, the bias amplitude increases with the noise while it remains constant for the second one. For both families, the mean value of the random error increases with the noise level and with the inverse of the subset size. Furthermore, the random error decreases with the radius of the speckle for the first family, while it increases for the second one. These two different behaviours of the tested DIC package are probably due to their underlying DIC formulation (interpolation, correlation criteria, optimisation process)

    Digital Image Correlation accuracy: influence of kind of speckle and recording setup

    No full text
    Digital Image Correlation (DIC) is a popular optical technique which allows the measurement of displacement and strain fields on an object surface showing a random speckle pattern. To use its extension to 3D cases (called Digital Volume Correlation, DVC), it is often necessary to include particles in the material in order to have a sufficient contrast. However, as these particles are more rigid than the material, it is not sure that the correlation technique is able to follow exactly strains on the speckle pattern made of powder. As the digital recording process by CCD camera and correlation algorithms are the same between 2D and 3D cases, this study is then conducted in 2D cases in order to show the influence of the powder in the speckle pattern on the evaluation of displacement by DIC linked to the choice of the type of interpolation, of CCD cameras and lighting. In displacement tests, only the recording setup seems to have a strong influence on the accuracy of measurements. For strain experiments, powder has an effect on strain measurements over 10%

    Fracture process analysis in Magnesia-Hercynite refractory materials by combining an enhanced Digital Image Correlation method with Wedge Splitting Test

    No full text
    International audienceMagnesia-Hercynite bricks destined for thermal shock applications in cement rotary kilns often show an enhanced crack propagation resistance due to an engineered microstructure design. In these materials, microcrack networks, resulting from the thermal expansion mismatch between magnesia matrix and Hercynite aggregates, promote the activation of energy dissipating mechanisms within the so-called Fracture Process Zone (FPZ) during loading. In this research, the fracture behaviour of a Magnesia-Hercynite material has been investigated by coupling an enhanced Digital Image Correlation method (2P-DIC) with the Wedge Splitting Test (WST). The coupling of these advanced characterisation methods is very effective in measuring important fracture parameters accurately and in highlighting characteristic fracture mechanisms, such as crack-branching. A refined R-curve approach is proposed with effective fracture energy calculations based on 2P-DIC measurements. The results demonstrate interesting correlations between FPZ development and an enhanced crack propagation resistance

    High-temperature digital image correlation techniques for full-field strain and crack length measurement on ceramics at 1200°C: Optimization of speckle pattern and uncertainty assessment

    No full text
    International audienceHigh-temperature mechanical tests coupled with Digital Image Correlation (DIC) on ceramics which exhibit rather low level of strain require to overcome extreme experimental conditions that usually can reduce significantly measurement accuracy. Thermal resistance of speckle pattern, black body radiation and heat haze are three main concerns, which should thus be taken into account while designing a high-temperature image acquisition setup. In this aim, an experimental procedure has been specifically designed in order to minimize the three above-mentioned disturbances. The main objective of this study is to select a suitable high-temperature resistant speckle pattern for mechanical characterization at 1200 °C (or above) on refractory ceramics. Most of tested speckle patterns were performed with white alumina adhesive and dark ceramic grains (silicon carbide or brown fused alumina). Different grain sizes of silicon carbide were tested. At first, different speckle patterns are compared in terms of DIC strain measurement uncertainty by discussing speckle features, some main DIC parameters and two image pre-treatments (low pass filter, image size reduction). Then, these speckle patterns are tested to analyse fracture behaviour of refractories through a Brazilian test. An enhanced digital image correlation technique (2P-DIC), dedicated to monitor the fracture behaviour, is applied to study the evolution of crack length. The best representation of crack progression has been achieved for sample surface covered with a fine SiC powder ranging from 50-100 ”m. It is then possible to compare the fracture behaviour between 1200°C and 20°C and to show that the refractory exhibits more crack branching at 1200°C in comparison with behaviour at room temperature
    • 

    corecore