18 research outputs found

    Reconstruction of Objects by Direct Demodulation

    Full text link
    High resolution reconstruction of complicated objects from incomplete and noisy data can be achieved by solving modulation equations iteratively under physical constraints. This direct demodulation method is a powerful technique for dealing with inverse problem in general case. Spectral and image restorations and computerized tomography are only particular cases of general demodulation. It is possible to reconstruct an object in higher dimensional space from observations by a simple lower dimensional instrument through direct demodulation. Our simulations show that wide field and high resolution images of space hard X-rays and soft gamma rays can be obtained by a collimated non-position-sensitive detector without coded aperture masks.Comment: 11 pages, 6 figure

    Allen Telescope Array Multi-Frequency Observations of the Sun

    Full text link
    We present the first observations of the Sun with the Allen Telescope Array (ATA). We used up to six frequencies, from 1.43 to 6 GHz, and baselines from 6 to 300 m. To our knowledge, these are the first simultaneous multifrequency full-Sun maps obtained at microwave frequencies without mosaicing. The observations took place when the Sun was relatively quiet, although at least one active region was present each time. We present multi-frequency flux budgets for each sources on the Sun. Outside of active regions, assuming optically thin bremsstrahlung (free--free) coronal emission on top of an optically thick ~10 000 K chromosphere, the multi-frequency information can be condensed into a single, frequency-independent, "coronal bremsstrahlung contribution function" [EM/sqrt(T)] map. This technique allows the separation of the physics of emission as well as a measurement of the density structure of the corona. Deviations from this simple relationship usually indicate the presence of an additional gyroresonance-emission component, as is typical in active regions.Comment: 16 pages, 11 figures. Accepted for publication in Solar Physic

    Gravitational Lensing at Millimeter Wavelengths

    Full text link
    With today's millimeter and submillimeter instruments observers use gravitational lensing mostly as a tool to boost the sensitivity when observing distant objects. This is evident through the dominance of gravitationally lensed objects among those detected in CO rotational lines at z>1. It is also evident in the use of lensing magnification by galaxy clusters in order to reach faint submm/mm continuum sources. There are, however, a few cases where millimeter lines have been directly involved in understanding lensing configurations. Future mm/submm instruments, such as the ALMA interferometer, will have both the sensitivity and the angular resolution to allow detailed observations of gravitational lenses. The almost constant sensitivity to dust emission over the redshift range z=1-10 means that the likelihood for strong lensing of dust continuum sources is much higher than for optically selected sources. A large number of new strong lenses are therefore likely to be discovered with ALMA, allowing a direct assessment of cosmological parameters through lens statistics. Combined with an angular resolution <0.1", ALMA will also be efficient for probing the gravitational potential of galaxy clusters, where we will be able to study both the sources and the lenses themselves, free of obscuration and extinction corrections, derive rotation curves for the lenses, their orientation and, thus, greatly constrain lens models.Comment: 69 pages, Review on quasar lensing. Part of a LNP Topical Volume on "Dark matter and gravitational lensing", eds. F. Courbin, D. Minniti. To be published by Springer-Verlag 2002. Paper with full resolution figures can be found at ftp://oden.oso.chalmers.se/pub/tommy/mmviews.ps.g

    First Results from SIRIUS, the Interferometric Imaging Demonstrator for VIDA

    No full text

    CLEAN Based on Spatial Source Coherence

    No full text

    Observations of neutral hydrogen in IC 1613, NCG 6822 and M 82

    No full text

    Observations of neutral hydrogen in IC 1613, NCG 6822 and M 82

    No full text
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe

    Deconvolution of Azimuthal Mode Detection Measurements

    No full text
    corecore