15,807 research outputs found

    Towards a more inclusive and precautionary indicator of global sustainability

    No full text
    We construct a hybrid, economic indicator of the sustainability of global well-being, which is more inclusive than existing indicators and incorporates an environmentally pessimistic, physical constraint on global warming. Our methodology extends the World Bank's Adjusted Net Saving (ANS) indicator to include the cost of population growth, the benefit of technical progress, and a much higher, precautionary cost of current CO2 emissions. Future warming damage is so highly unknowable that valuing emissions directly is rather arbitrary, so we use a novel, inductive approach: we modify damage and climate parameters in the deterministic DICE climate-economy model so it becomes economically optimal to control emissions in a way likely to limit warming to an agreed target, here 2 degrees Celsius. If future emissions are optimally controlled, our ANS then suggests that current global well-being is sustainable. But if emissions remain uncontrolled, our base-case ANS is negative now and our corresponding, modified DICE model has an unsustained development path, with well-being peaking in 2065. Current ANS on an uncontrolled path may thus be a useful heuristic indicator of future unsustainability. Our inductive method might allow ANS to include other very hard-to-value, environmental threats to global sustainability, like biodiversity loss and nitrogen pollution

    Exact condition on the Kohn-Sham kinetic energy, and modern parametrization of the Thomas-Fermi density

    Full text link
    We study the asymptotic expansion of the neutral-atom energy as the atomic number Z goes to infinity, presenting a new method to extract the coefficients from oscillating numerical data. We find that recovery of the correct expansion is an exact condition on the Kohn-Sham kinetic energy that is important for the accuracy of approximate kinetic energy functionals for atoms, molecules and solids, when evaluated on a Kohn-Sham density. For example, this determines the small gradient limit of any generalized gradient approximation, and conflicts somewhat with the standard gradient expansion. Tests are performed on atoms, molecules, and jellium clusters. We also give a modern, highly accurate parametrization of the Thomas-Fermi density of neutral atoms.Comment: 10 pages, 9 figures, submitted at JC

    Collective Excitations of Strongly Interacting Fermi Gases of Atoms in a Harmonic Trap

    Get PDF
    The zero-temperature properties of a dilute two-component Fermi gas in the BCS-BEC crossover are investigated. On the basis of a generalization of the Hylleraas-Undheim method, we construct rigorous upper bounds to the collective frequencies for the radial and the axial breathing mode of the Fermi gas under harmonic confinement in the framework of the hydrodynamic theory. The bounds are compared to experimental data for trapped vapors of Li6 atoms.Comment: 11 pages, 2 figure

    Orbital-free Bond Breaking via Machine Learning

    Get PDF
    Machine learning is used to approximate the kinetic energy of one dimensional diatomics as a functional of the electron density. The functional can accurately dissociate a diatomic, and can be systematically improved with training. Highly accurate self-consistent densities and molecular forces are found, indicating the possibility for ab-initio molecular dynamics simulations

    R-matrix Floquet theory for laser-assisted electron-atom scattering

    Get PDF
    A new version of the R-matrix Floquet theory for laser-assisted electron-atom scattering is presented. The theory is non-perturbative and applicable to a non-relativistic many-electron atom or ion in a homogeneous linearly polarized field. It is based on the use of channel functions built from field-dressed target states, which greatly simplifies the general formalism.Comment: 18 pages, LaTeX2e, submitted to J.Phys.

    The role of damped Alfven waves on magnetospheric accretion models of young stars

    Get PDF
    We examine the role of Alfven wave damping in heating the plasma in the magnetic funnels of magnetospheric accretion models of young stars. We study four different damping mechanisms of the Alfven waves: nonlinear, turbulent, viscous-resistive and collisional. Two different possible origins for the Alfven waves are discussed: 1) Alfven waves generated at the surface of the star by the shock produced by the infalling matter; and 2) Alfven waves generated locally in the funnel by the Kelvin-Helmholtz instability. We find that, in general, the damping lengths are smaller than the tube length. Since thermal conduction in the tube is not efficient, Alfven waves generated only at the star's surface cannot heat the tube to the temperatures necessary to fit the observations. Only for very low frequency Alfven waves ~10^{-5} the ion cyclotron frequency, is the viscous-resistive damping length greater than the tube length. In this case, the Alfven waves produced at the surface of the star are able to heat the whole tube. Otherwise, local production of Alfven waves is required to explain the observations. The turbulence level is calculated for different frequencies for optically thin and thick media. We find that turbulent velocities varies greatly for different damping mechanisms, reaching \~100 km s^{-1} for the collisional damping of small frequency waves.Comment: 29 pages, 12 figures, to appear in The Astrophysical Journa

    Recent Decisions

    Get PDF
    Comments on recent decisions by William Fleming, Edward L. Burke, William J. Priebe, Anthony V. Amodio, Richard G. Dytrych, James Kalo, and John A. Pietrykowski

    Determination of Unfrozen Water in Winter Cereals at Subfreezing Temperatures

    Full text link
    corecore