13,470 research outputs found

    Identification of Sequences Encoding Symbiodinium minutum Mitochondrial Proteins.

    Get PDF
    The dinoflagellates are an extremely diverse group of algae closely related to the Apicomplexa and the ciliates. Much work has previously been undertaken to determine the presence of various biochemical pathways within dinoflagellate mitochondria. However, these studies were unable to identify several key transcripts including those encoding proteins involved in the pyruvate dehydrogenase complex, iron-sulfur cluster biosynthesis, and protein import. Here, we analyze the draft nuclear genome of the dinoflagellate Symbiodinium minutum, as well as RNAseq data to identify nuclear genes encoding mitochondrial proteins. The results confirm the presence of a complete tricarboxylic acid cycle in the dinoflagellates. Results also demonstrate the difficulties in using the genome sequence for the identification of genes due to the large number of introns, but show that it is highly useful for the determination of gene duplication events

    Volume-reflecting dielectric heat shield

    Get PDF
    White, volume-reflecting dielectric material absorbs essentially none of the incident radiant energy, and continues to reflect even though in severe environment its surface is melted and is being vaporized. Process of overall reflectance in dielectric material, involving internal refractions and reflections, is similar to process of reflection in paints

    The sleep cycle and subcortical-cortical EEG relations in the unrestrained chimpanzee

    Get PDF
    Sleep cycle and subcortical-cortical EEG relations in unrestrained chimpanze

    Low-degree multi-spectral p-mode fitting

    Get PDF
    We combine unresolved-Sun velocity and intensity observations at multiple wavelengths from the Helioseismic and Magnetic Imager and Atmospheric Imaging Array onboard the Solar Dynamics Observatory to investigate the possibility of multi-spectral mode-frequency estimation at low spherical harmonic degree. We test a simple multi-spectral algorithm using a common line width and frequency for each mode and a separate amplitude, background and asymmetry parameter, and compare the results with those from fits to the individual spectra. The preliminary results suggest that this approach may provide a more stable fit than using the observables separately

    Characteristics of long-duration inhibitory postsynaptic potentials in rat neocortical neurons in vitro

    Get PDF
    1. The characteristics of long-duration inhibitory postsynaptic potentials (l-IPSPs) which are evoked in rat frontal neocortical neurons by local electrical stimulation were investigated with intracellular recordings from anin vitro slice preparation. 2. Stimulation with suprathreshold intensities evoked l-IPSPs with typical durations of 600–900 msec at resting membrane potential. Conductance increases of 15–60% were measured at the peak amplitude of l-IPSPs (150–250 msec poststimulus). 3. The duration of the conductance increases during l-IPSPs displayed a significant voltage dependence, decreasing as the membrance potential was depolarized and increasing with hyperpolarization. 4. The reversal potential of l-IPSPs is significantly altered by reductions in the extracellular potassium concentration. Therefore it is concluded that l-IPSPs in rat neocortical neurons are generated by the activation of a potassium conductance. 5. l-IPSPs exhibit stimulation fatigue. Stimulation with a frequency of 1 Hz produces a complete fatigue of the conductance increases during l-IPSPs after approximately 20 consecutive stimuli. Recovery from this fatigue requires minutes. 6. l-IPSPs are not blocked by bicuculline but are blocked by baclofen

    Deeply penetrating banded zonal flows in the solar convection zone

    Full text link
    Helioseismic observations have detected small temporal variations of the rotation rate below the solar surface corresponding to the so-called `torsional oscillations' known from Doppler measurements of the surface. These appear as bands of slower and faster than average rotation moving equatorward. Here we establish, using complementary helioseismic observations over four years from the GONG network and from the MDI instrument on board SOHO, that the banded flows are not merely a near-surface phenomenon: rather they extend downward at least 60 Mm (some 8% of the total solar radius) and thus are evident over a significant fraction of the nearly 200 Mm depth of the solar convection zone.Comment: 4 pages, 4 figures To be published in ApJ Letters (accepted 3/3/2000

    Solar-cycle variation of the sound-speed asphericity from GONG and MDI data 1995-2000

    Get PDF
    We study the variation of the frequency splitting coefficients describing the solar asphericity in both GONG and MDI data, and use these data to investigate temporal sound-speed variations as a function of both depth and latitude during the period from 1995-2000 and a little beyond. The temporal variations in even splitting coefficients are found to be correlated to the corresponding component of magnetic flux at the solar surface. We confirm that the sound-speed variations associated with the surface magnetic field are superficial. Temporally averaged results show a significant excess in sound speed around 0.92 solar radii and latitude of 60 degrees.Comment: To be published in MNRAS, accepted July 200

    Changes in the sensitivity of solar p-mode frequency shifts to activity over three solar cycles

    Get PDF
    Low-degree solar p-mode observations from the long-lived Birmingham Solar Oscillations Network (BiSON) stretch back further than any other single helioseismic data set. Results from BiSON have suggested that the response of the mode frequency to solar activity levels may be different in different cycles. In order to check whether such changes can also be seen at higher degrees, we compare the response of medium-degree solar p-modes to activity levels across three solar cycles using data from Big Bear Solar Observatory (BBSO), Global Oscillation Network Group (GONG), Michelson Doppler Imager (MDI) and Helioseismic and Magnetic Imager (HMI), by examining the shifts in the mode frequencies and their sensitivity to solar activity levels. We compare these shifts and sensitivities with those from radial modes from BiSON. We find that the medium-degree data show small but significant systematic differences between the cycles, with solar cycle 24 showing a frequency shift about 10 per cent larger than cycle 23 for the same change in activity as determined by the 10.7 cm radio flux. This may support the idea that there have been changes in the magnetic properties of the shallow subsurface layers of the Sun that have the strongest influence on the frequency shifts.Comment: 6 pages, 3 figures, accepted by MNRAS 3rd July 201

    Parametrizing the time-variation of the "surface term" of stellar p-mode frequencies: application to helioseismic data

    Get PDF
    The solar-cyle variation of acoustic mode frequencies has a frequency dependence related to the inverse mode inertia. The discrepancy between model predictions and measured oscillation frequencies for solar and solar-type stellar acoustic modes includes a significant frequency-dependent term known as the surface term that is also related to the inverse mode inertia. We parametrize both the surface term and the frequency variations for low-degree solar data from Birmingham Solar-Oscillations Network (BiSON) and medium-degree data from the Global Oscillations Network Group (GONG) using the mode inertia together with cubic and inverse frequency terms. We find that for the central frequency of rotationally split multiplets the cubic term dominates both the average surface term and the temporal variation, but for the medium-degree case the inverse term improves the fit to the temporal variation. We also examine the variation of the even-order splitting coefficients for the medium-degree data and find that, as for the central frequency, the latitude-dependent frequency variation, which reflects the changing latitudinal distribution of magnetic activity over the solar cycle, can be described by the combination of a cubic and an inverse function of frequency scaled by inverse mode inertia. The results suggest that this simple parametrization could be used to assess the activity-related frequency variation in solar-like asteroseismic targets.Comment: 13 pages, 11 figures. Accepted by MNRAS 13 October 201
    corecore