811 research outputs found

    Angular analysis of B0→D∗−D∗+s with D∗+s→D+sγ decays

    Get PDF
    The first full angular analysis of the B0→D∗−D∗+s decay is performed using 6 fb−1 of pp collision data collected with the LHCb experiment at a centre-of-mass energy of 13 TeV. The D∗+s→D+sγ and D*− → D¯¯¯¯0π− vector meson decays are used with the subsequent D+s → K+K−π+ and D¯¯¯¯0 → K+π− decays. All helicity amplitudes and phases are measured, and the longitudinal polarisation fraction is determined to be fL = 0.578 ± 0.010 ± 0.011 with world-best precision, where the first uncertainty is statistical and the second is systematic. The pattern of helicity amplitude magnitudes is found to align with expectations from quark-helicity conservation in B decays. The ratio of branching fractions [ℬ(B0→D∗−D∗+s) × ℬ(D∗+s→D+sγ)]/ℬ(B0 → D*−D+s) is measured to be 2.045 ± 0.022 ± 0.071 with world-best precision. In addition, the first observation of the Cabibbo-suppressed Bs → D*−D+s decay is made with a significance of seven standard deviations. The branching fraction ratio ℬ(Bs → D*−D+s)/ℬ(B0 → D*−D+s) is measured to be 0.049 ± 0.006 ± 0.003 ± 0.002, where the third uncertainty is due to limited knowledge of the ratio of fragmentation fractionsS

    Searches for 25 rare and forbidden decays of D+ and D+s mesons

    Get PDF
    A search is performed for rare and forbidden charm decays of the form D+(s)→h±ℓ+ℓ(′)∓, where h± is a pion or kaon and ℓ(′)± is an electron or muon. The measurements are performed using proton-proton collision data, corresponding to an integrated luminosity of 1.6 fb−1, collected by the LHCb experiment in 2016. No evidence is observed for the 25 decay modes that are investigated and 90 % confidence level limits on the branching fractions are set between 1.4 × 10−8 and 6.4 × 10−6. In most cases, these results represent an improvement on existing limits by one to two orders of magnitudeWe acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MICINN (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); DOE NP and NSF (U.S.A.). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFINHH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (U.S.A.). Individual groups or members have received support from AvH Foundation (Germany); EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union); A*MIDEX, ANR, Labex P2IO and OCEVU, and Région Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, Thousand Talents Program, and Sci. & Tech. Program of Guangzhou (China); RFBR, RSF and Yandex LLC (Russia); GVA, XuntaGal and GENCAT (Spain); the Royal Society and the Leverhulme Trust (United Kingdom)S

    Studies of η\eta and η\eta' production in pppp and ppPb collisions

    Full text link
    The production of η\eta and η\eta' mesons is studied in proton-proton and proton-lead collisions collected with the LHCb detector. Proton-proton collisions are studied at center-of-mass energies of 5.025.02 and 13 TeV13~{\rm TeV}, and proton-lead collisions are studied at a center-of-mass energy per nucleon of 8.16 TeV8.16~{\rm TeV}. The studies are performed in center-of-mass rapidity regions 2.5<yc.m.<3.52.5<y_{\rm c.m.}<3.5 (forward rapidity) and 4.0<yc.m.<3.0-4.0<y_{\rm c.m.}<-3.0 (backward rapidity) defined relative to the proton beam direction. The η\eta and η\eta' production cross sections are measured differentially as a function of transverse momentum for 1.5<pT<10 GeV1.5<p_{\rm T}<10~{\rm GeV} and 3<pT<10 GeV3<p_{\rm T}<10~{\rm GeV}, respectively. The differential cross sections are used to calculate nuclear modification factors. The nuclear modification factors for η\eta and η\eta' mesons agree at both forward and backward rapidity, showing no significant evidence of mass dependence. The differential cross sections of η\eta mesons are also used to calculate η/π0\eta/\pi^0 cross section ratios, which show evidence of a deviation from the world average. These studies offer new constraints on mass-dependent nuclear effects in heavy-ion collisions, as well as η\eta and η\eta' meson fragmentation.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/Publications/p/LHCb-PAPER-2023-030.html (LHCb public pages

    Enhanced production of Λb0\Lambda_{b}^{0} baryons in high-multiplicity pppp collisions at s=13\sqrt{s} = 13 TeV

    Full text link
    The production rate of Λb0\Lambda_{b}^{0} baryons relative to B0B^{0} mesons in pppp collisions at a center-of-mass energy s=13\sqrt{s} = 13 TeV is measured by the LHCb experiment. The ratio of Λb0\Lambda_{b}^{0} to B0B^{0} production cross-sections shows a significant dependence on both the transverse momentum and the measured charged-particle multiplicity. At low multiplicity, the ratio measured at LHCb is consistent with the value measured in e+ee^{+}e^{-} collisions, and increases by a factor of 2\sim2 with increasing multiplicity. At relatively low transverse momentum, the ratio of Λb0\Lambda_{b}^{0} to B0B^{0} cross-sections is higher than what is measured in e+ee^{+}e^{-} collisions, but converges with the e+ee^{+}e^{-} ratio as the momentum increases. These results imply that the evolution of heavy bb quarks into final-state hadrons is influenced by the density of the hadronic environment produced in the collision. Comparisons with a statistical hadronization model and implications for the mechanisms enforcing quark confinement are discussed.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-027.html (LHCb public pages

    Fraction of χc\chi_c decays in prompt J/ψJ/\psi production measured in pPb collisions at sNN=8.16\sqrt{s_{NN}}=8.16 TeV

    Full text link
    The fraction of χc1\chi_{c1} and χc2\chi_{c2} decays in the prompt J/ψJ/\psi yield, Fχc=σχcJ/ψ/σJ/ψF_{\chi c}=\sigma_{\chi_c \to J/\psi}/\sigma_{J/\psi}, is measured by the LHCb detector in pPb collisions at sNN=8.16\sqrt{s_{NN}}=8.16 TeV. The study covers the forward (1.5<y<4.01.5<y^*<4.0) and backward (5.0<y<2.5-5.0<y^*<-2.5) rapidity regions, where yy^* is the J/ψJ/\psi rapidity in the nucleon-nucleon center-of-mass system. Forward and backward rapidity samples correspond to integrated luminosities of 13.6 ±\pm 0.3 nb1^{-1} and 20.8 ±\pm 0.5 nb1^{-1}, respectively. The result is presented as a function of the J/ψJ/\psi transverse momentum pT,J/ψp_{T,J/\psi} in the range 1<pT,J/ψ<20<p_{T, J/\psi}<20 GeV/cc. The FχcF_{\chi c} fraction at forward rapidity is compatible with the LHCb measurement performed in pppp collisions at s=7\sqrt{s}=7 TeV, whereas the result at backward rapidity is 2.4 σ\sigma larger than in the forward region for 1<pT,J/ψ<31<p_{T, J/\psi}<3 GeV/cc. The increase of FχcF_{\chi c} at low pT,J/ψp_{T, J/\psi} at backward rapidity is compatible with the suppression of the ψ\psi(2S) contribution to the prompt J/ψJ/\psi yield. The lack of in-medium dissociation of χc\chi_c states observed in this study sets an upper limit of 180 MeV on the free energy available in these pPb collisions to dissociate or inhibit charmonium state formation.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-028.html (LHCb public pages

    Observation of strangeness enhancement with charmed mesons in high-multiplicity pPbp\mathrm{Pb} collisions at sNN=8.16\sqrt {s_{\mathrm{NN}}}=8.16\,TeV

    Full text link
    The production of prompt Ds+D^+_{s} and D+D^+ mesons is measured by the LHCb experiment in proton-lead (pPbp\mathrm{Pb}) collisions in both the forward (1.5<y<4.01.5<y^*<4.0) and backward (5.0<y<2.5-5.0<y^*<-2.5) rapidity regions at a nucleon-nucleon center-of-mass energy of sNN=8.16\sqrt {s_{\mathrm{NN}}}=8.16\,TeV. The nuclear modification factors of both Ds+D^+_{s} and D+D^+ mesons are determined as a function of transverse momentum, pTp_{\mathrm{T}}, and rapidity. In addition, the Ds+D^+_{s} to D+D^+ cross-section ratio is measured as a function of the charged particle multiplicity in the event. An enhanced Ds+D^+_{s} to D+D^+ production in high-multiplicity events is observed for the whole measured pTp_{\mathrm{T}} range, in particular at low pTp_{\mathrm{T}} and backward rapidity, where the significance exceeds six standard deviations. This constitutes the first observation of strangeness enhancement in charm quark hadronization in high-multiplicity pPbp\mathrm{Pb} collisions. The results are also qualitatively consistent with the presence of quark coalescence as an additional charm quark hadronization mechanism in high-multiplicity proton-lead collisions.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-021.html (LHCb public pages

    A measurement of ΔΓs\Delta \Gamma_{s}

    Full text link
    Using a dataset corresponding to 9 fb19~\mathrm{fb}^{-1} of integrated luminosity collected with the LHCb detector between 2011 and 2018 in proton-proton collisions, the decay-time distributions of the decay modes Bs0J/ψηB_s^0 \rightarrow J/\psi \eta' and Bs0J/ψπ+πB_s^0 \rightarrow J/\psi \pi^{+} \pi^{-} are studied. The decay-width difference between the light and heavy mass eigenstates of the Bs0B_s^0 meson is measured to be ΔΓs=0.087±0.012±0.009ps1\Delta \Gamma_s = 0.087 \pm 0.012 \pm 0.009 \, \mathrm{ps}^{-1}, where the first uncertainty is statistical and the second systematic.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-025.htm

    Search for CP\textit{CP} violation in the phase space of D0KS0K±πD^{0} \rightarrow K_{S}^{0} K^{\pm} \pi^{\mp} decays with the energy test

    Full text link
    A search for CP\textit{CP} violation in D0KS0K+πD^{0} \rightarrow K_{S}^{0} K^{+} \pi^{-} and D0KS0Kπ+D^{0} \rightarrow K_{S}^{0} K^{-} \pi^{+} decays is reported. The search is performed using an unbinned model-independent method known as the energy test that probes local CP\textit{CP} violation in the phase space of the decays. The data analysed correspond to an integrated luminosity of 5.4 5.4~fb1^{-1} collected in proton-proton collisions by the LHCb experiment at a centre-of-mass energy of s=13\sqrt{s}=13~TeV, amounting to approximately 950000 and 620000 signal candidates for the D0KS0Kπ+D^{0} \rightarrow K_{S}^{0} K^{-} \pi^{+} and D0KS0K+πD^{0} \rightarrow K_{S}^{0} K^{+} \pi^{-} modes, respectively. The method is validated using D0Kπ+ππ+D^{0} \rightarrow K^{-} \pi^{+} \pi^{-} \pi^{+} and D0KS0π+πD^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-} decays, where CP\textit{CP}-violating effects are expected to be negligible, and using background-enhanced regions of the signal decays. The results are consistent with CP\textit{CP} symmetry in both the D0KS0Kπ+D^{0} \rightarrow K_{S}^{0} K^{-} \pi^{+} and the D0KS0K+πD^{0} \rightarrow K_{S}^{0} K^{+} \pi^{-} decays, with pp-values for the hypothesis of no CP\textit{CP} violation of 70% and 66%, respectively.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-019.html (LHCb public pages

    Helium identification with LHCb

    Get PDF
    The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pppp collision data at s=13TeV\sqrt{s}=13\,{\rm TeV} recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5fb15.5\,{\rm fb}^{-1}. A total of around 10510^5 helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50%50\% with a corresponding background rejection rate of up to O(1012)\mathcal O(10^{12}). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-DP-2023-002.html (LHCb public pages

    Measurement of associated J/ψJ/\psi-ψ(2S)\psi(2S) production cross-section in pppp collisions at s=13\sqrt{s}=13 TeV

    Full text link
    The cross-section of associated J/ψJ/\psi-ψ(2S)\psi(2S) production in proton-proton collisions at a centre-of-mass energy of s=13\sqrt{s}=13 TeV is measured using a data sample corresponding to an integrated luminosity of 4.2 fb1^{-1}, collected by the LHCb experiment. The measurement is performed for both J/ψJ/\psi and ψ(2S)\psi(2S) mesons having transverse momentum pT<14p_{\text{T}}<14 GeV/cc and rapidity 2.0<y<4.52.0<y<4.5, assuming negligible polarisation of the J/ψJ/\psi and ψ(2S)\psi(2S) mesons. The production cross-section is measured to be 4.5±0.7±0.34.5\pm0.7\pm0.3 nb, where the first uncertainty is statistical and the second systematic. The differential cross-sections are measured as functions of several kinematic variables of the J/ψJ/\psi-ψ(2S)\psi(2S) candidates. The results are combined with a measurement of J/ψJ/\psi-J/ψJ/\psi production, giving a cross-section ratio between J/ψJ/\psi-ψ(2S)\psi(2S) and J/ψJ/\psi-J/ψJ/\psi production of 0.274±0.044±0.0080.274\pm0.044\pm0.008, where the first uncertainty is statistical and the second systematic.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-023.html (LHCb public pages
    corecore