1,344 research outputs found

    The Possible White Dwarf-Neutron Star Connection

    Get PDF
    The current status of the problem of whether neutron stars can form, in close binary systems, by accretion-induced collapse (AIC) of white dwarfs is examined. We find that, in principle, both initially cold C+O white dwarfs in the high-mass tail of their mass distribution in binaries and O+Ne+Mg white dwarfs can produce neutron stars. Which fractions of neutron stars in different types of binaries (or descendants from binaries) might originate from this process remains uncertain.Comment: 6 pages. To appear in "White Dwarfs", ed. J. Isern, M. Hernanz, and E. Garcia-Berro (Dordrecht: Kluwer

    Production and propagation of heavy hadrons in air-shower simulators

    Get PDF
    Very energetic charm and bottom hadrons may be produced in the upper atmosphere when a primary cosmic ray or the leading hadron in an extensive air shower collide with a nucleon. At E108E\approx 10^8 GeV their decay length becomes of the order of 10 km, implying that they tend to interact in the air instead of decaying. Since the inelasticity in these collisions is much smaller than the one in proton and pion collisions, there could be rare events where a heavy-hadron component transports a significant amount of energy deep into the atmosphere. We have developed a module for the detailed simulation of these processes and have included it in a new version of the air shower simulator AIRES. We study the frequency, the energy distribution and the depth of charm and bottom production, as well as the depth and the energy distribution of these quarks when they decay. As an illustration, we consider the production and decay of tau leptons (from DsD_s decays) and the lepton flux at PeV energies from a 30 EeV proton primary. The proper inclusion of charm and bottom hadrons in AIRES opens the possibility to search for air-shower observables that are sensitive to heavy quark effects.Comment: Accepted for publication in Astroparticle Physic

    Photoproduction with a mini-jet model and Cosmic Ray showers

    Full text link
    We present post-LHC updates of estimates of the total photo-production cross section in a mini-jet model with infrared soft gluon resummation, and apply the model to study Cosmic Ray shower development, comparing the results with those obtained from other existing models.Comment: 7 pages, 5 figures, presented at Photon 2017, 22-26 May 2017 CER
    corecore