345 research outputs found
Mineralogy of Asteroids from Observations with the Spitzer Space Telescope
Visible and near-infrared (approximately 0.3 to 4.0 microns) spectroscopy has been successfully employed since the early 1970 s to infer the surface compositions of asteroids. Spectroscopic observations in the thermal infrared (approximately 5 to 40 microns) are similarly promising. Silicate spectra in this range are dominated by Si-O stretch and bend fundamentals, and other minerals have similarly diagnostic bands. Observations in this spectral range are difficult from the ground due to strong telluric absorptions and background emission. Nevertheless, spectral structure has been detected on a few asteroids in the 8 to 14-micron range from the ground, as well as from orbit with the ISO satellite. The Spitzer Space Telescope can observe asteroids with much higher sensitivity over a broader wavelength range than is possible from the ground or was possible with ISO. We present results of measurements of asteroids with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope
Spitzer/MIPS Limits on Asteroidal Dust in the Pulsar Planetary System PSR B1257+1
With the MIPS camera on Spitzer, we have searched for far-infrared emission
from dust in the planetary system orbiting pulsar PSR 1257+12. With accuracies
of 0.05 mJy at 24 um and 1.5 mJy at 70 um, photometric measurements find no
evidence for emission at these wavelengths. These observations place new upper
limits on the luminosity of dust with temperatures between 20 and 1000 K. They
are particularly sensitive to dust temperatures of 100-200 K, for which they
limit the dust luminosity to below of the pulsar's spin-down
luminosity, three orders of magnitude better than previous limits. Despite
these improved constraints on dust emission, an asteroid belt similar to the
Solar System's cannot be ruled out
Detection Technique for Artificially-Illuminated Objects in the Outer Solar System and Beyond
Existing and planned optical telescopes and surveys can detect
artificially-illuminated objects comparable in total brightness to a major
terrestrial city out to the outskirts of the Solar System. Orbital parameters
of Kuiper belt objects (KBOs) are routinely measured to exquisite precisions of
<10^{-3}. Here we propose to measure the variation of the observed flux F from
such objects as a function of their changing orbital distances D.
Sunlight-illuminated objects will show a logarithmic slope alpha=(dlogF/dlog
D)=-4 whereas artificially-illuminated objects should exhibit alpha=-2. Planned
surveys using the proposed LSST will provide superb data that would allow
measurement of alpha for thousands of KBOs. If objects with alpha=-2 are found,
follow-up observations can measure their spectra to determine if they are
illuminated by artificial lighting. The search can be extended beyond the Solar
System with future generations of telescopes on the ground and in space, which
would be capable of detecting phase modulation due to very strong artificial
illumination on the night-side of planets as they orbit their parent stars.Comment: 9 pages, accepted for publication in Astrobiolog
Planetary Science Goals for the Spitzer Warm Era
The overarching goal of planetary astronomy is to deduce how the present collection of objects found in our Solar System were formed from the original material present in the proto-solar nebula. As over two hundred exo-planetary systems are now known, and multitudes more are expected, the Solar System represents the closest and best system which we can study, and the only one in which we can clearly resolve individual bodies other than planets. In this White Paper we demonstrate how to use Spitzer Space Telescope InfraRed Array Camera Channels 1 and 2 (3.6 and 4.5 µm) imaging photometry with large dedicated surveys to advance our knowledge of Solar System formation and evolution. There are a number of vital, key projects to be pursued using dedicated large programs that have not been pursued during the five years of Spitzer cold operations. We present a number of the largest and most important projects here; more will certainly be proposed once the warm era has begun, including important observations of newly discovered objects
ExploreNEOs I: Description and first results from the Warm Spitzer NEO Survey
We have begun the ExploreNEOs project in which we observe some 700 Near Earth
Objects (NEOs) at 3.6 and 4.5 microns with the Spitzer Space Telescope in its
Warm Spitzer mode. From these measurements and catalog optical photometry we
derive albedos and diameters of the observed targets. The overall goal of our
ExploreNEOs program is to study the history of near-Earth space by deriving the
physical properties of a large number of NEOs. In this paper we describe both
the scientific and technical construction of our ExploreNEOs program. We
present our observational, photometric, and thermal modeling techniques. We
present results from the first 101 targets observed in this program. We find
that the distribution of albedos in this first sample is quite broad, probably
indicating a wide range of compositions within the NEO population. Many objects
smaller than one kilometer have high albedos (>0.35), but few objects larger
than one kilometer have high albedos. This result is consistent with the idea
that these larger objects are collisionally older, and therefore possess
surfaces that are more space weathered and therefore darker, or are not subject
to other surface rejuvenating events as frequently as smaller NEOs.Comment: AJ in pres
ExploreNEOs. II. The Accuracy of the Warm Spitzer Near-Earth Object Survey
We report on results of observations of near-Earth objects (NEOs) performed with the NASA Spitzer Space Telescope as part of our ongoing (2009-2011) Warm Spitzer NEO survey ("ExploreNEOs"), the primary aim of which is to provide sizes and albedos of some 700 NEOs. The emphasis of the work described here is an assessment of the overall accuracy of our survey results, which are based on a semi-empirical generalized model of asteroid thermal emission. The NASA Spitzer Space Telescope has been operated in the so-called Warm Spitzer mission phase since the cryogen was depleted in 2009 May, with the two shortest-wavelength channels, centered at 3.6 μm and 4.5 μm, of the Infrared Array Camera continuing to provide valuable data. The set of some 170 NEOs in our current Warm Spitzer results catalog contains 28 for which published taxonomic classifications are available, and 14 for which relatively reliable published diameters and albedos are available. A comparison of the Warm Spitzer results with previously published results ("ground truth"), complemented by a Monte Carlo error analysis, indicates that the rms Warm Spitzer diameter and albedo errors are ±20% and ±50%, respectively. Cases in which agreement with results from the literature is worse than expected are highlighted and discussed; these include the potential spacecraft target 138911 2001 AE_2. We confirm that 1.4 appears to be an appropriate overall default value for the relative reflectance between the V band and the Warm Spitzer wavelengths, for use in correction of the Warm Spitzer fluxes for reflected solar radiation
- …