166 research outputs found

    Processing political misinformation:comprehending the Trump phenomenon

    Get PDF
    his study investigated the cognitive processing of true and false political information. Specifically, it examined the impact of source credibility on the assessment of veracity when information comes from a polarizing source (Experiment 1), and effectiveness of explanations when they come from one's own political party or an opposition party (Experiment 2). These experiments were conducted prior to the 2016 Presidential election. Participants rated their belief in factual and incorrect statements that President Trump made on the campaign trail; facts were subsequently affirmed and misinformation retracted. Participants then re-rated their belief immediately or after a delay. Experiment 1 found that (i) if information was attributed to Trump, Republican supporters of Trump believed it more than if it was presented without attribution, whereas the opposite was true for Democrats and (ii) although Trump supporters reduced their belief in misinformation items following a correction, they did not change their voting preferences. Experiment 2 revealed that the explanation's source had relatively little impact, and belief updating was more influenced by perceived credibility of the individual initially purporting the information. These findings suggest that people use political figures as a heuristic to guide evaluation of what is true or false, yet do not necessarily insist on veracity as a prerequisite for supporting political candidates

    Infrared Constraints on AGN Tori Models

    Full text link
    This work focuses on the properties of dusty tori in active galactic nuclei (AGN) derived from the comparison of SDSS type 1 quasars with mid-Infrared (MIR) counterparts and a new, detailed torus model. The infrared data were taken by the Spitzer Wide-area InfraRed Extragalactic (SWIRE) Survey. Basic model parameters are constraint, such as the density law of the graphite and silicate grains, the torus size and its opening angle. A whole variety of optical depths is supported. The favoured models are those with decreasing density with distance from the centre, while there is no clear tendency as to the covering factor, ie small, medium and large covering factors are almost equally distributed. Based on the models that better describe the observed SEDs, properties such as the accretion luminosity, the mass of dust, the inner to outer radius ratio and the hydrogen column density are computed.Comment: 4 pages, 4 figures, to appear in "Infrared Diagnostics of Galaxy Evolution", ASP Conference Series, Pasadena, 14-16 November 200

    Physiology of short-term verbal memory

    Full text link
    These studies document a series of brain events accompanying short-term memory functions. For auditory verbal material the sequence involves at least two different sites within auditory cortex subserving sensory and cognitive processes of memorization. During the scanning of the short-term store structures within the medial temporal lobes, presumably the hippocampus, are active. There is an inconsistency between these results and the clinical observations of the need for an intact dominant parietal lobe for auditory short-term memory to function normally. Magnetic recordings showed no focal dipolar source of activity in the parietal lobe during any aspect of auditory short-term memory. The discrepancy could be accounted for by considering the parietal lobe lesion as "disconnecting" the lateral temporal cortex from the deep medial hippocampal structures thereby impeding auditory short-term functions (Geschwind, 1965). These studies show that the physiological analysis of brain events in the msec range can provide information about relatively complex cognitive processes underlying short-term memory. The magnetic and electrical recording methods provide a noninvasive way to study human brain functions involved in cognition that can then be correlated with behavioral measures of specific cognitive activities

    The Mechanisms of Codon Reassignments in Mitochondrial Genetic Codes

    Get PDF
    Many cases of non-standard genetic codes are known in mitochondrial genomes. We carry out analysis of phylogeny and codon usage of organisms for which the complete mitochondrial genome is available, and we determine the most likely mechanism for codon reassignment in each case. Reassignment events can be classified according to the gain-loss framework. The gain represents the appearance of a new tRNA for the reassigned codon or the change of an existing tRNA such that it gains the ability to pair with the codon. The loss represents the deletion of a tRNA or the change in a tRNA so that it no longer translates the codon. One possible mechanism is Codon Disappearance, where the codon disappears from the genome prior to the gain and loss events. In the alternative mechanisms the codon does not disappear. In the Unassigned Codon mechanism, the loss occurs first, whereas in the Ambiguous Intermediate mechanism, the gain occurs first. Codon usage analysis gives clear evidence of cases where the codon disappeared at the point of the reassignment and also cases where it did not disappear. Codon disappearance is the probable explanation for stop to sense reassignments and a small number of reassignments of sense codons. However, the majority of sense to sense reassignments cannot be explained by codon disappearance. In the latter cases, by analysis of the presence or absence of tRNAs in the genome and of the changes in tRNA sequences, it is sometimes possible to distinguish between the Unassigned Codon and Ambiguous Intermediate mechanisms. We emphasize that not all reassignments follow the same scenario and that it is necessary to consider the details of each case carefully.Comment: 53 pages (45 pages, including 4 figures + 8 pages of supplementary information). To appear in J.Mol.Evo

    Amino Acid Metabolic Origin as an Evolutionary Influence on Protein Sequence in Yeast

    Get PDF
    The metabolic cycle of Saccharomyces cerevisiae consists of alternating oxidative (respiration) and reductive (glycolysis) energy-yielding reactions. The intracellular concentrations of amino acid precursors generated by these reactions oscillate accordingly, attaining maximal concentration during the middle of their respective yeast metabolic cycle phases. Typically, the amino acids themselves are most abundant at the end of their precursor’s phase. We show that this metabolic cycling has likely biased the amino acid composition of proteins across the S. cerevisiae genome. In particular, we observed that the metabolic source of amino acids is the single most important source of variation in the amino acid compositions of functionally related proteins and that this signal appears only in (facultative) organisms using both oxidative and reductive metabolism. Periodically expressed proteins are enriched for amino acids generated in the preceding phase of the metabolic cycle. Proteins expressed during the oxidative phase contain more glycolysis-derived amino acids, whereas proteins expressed during the reductive phase contain more respiration-derived amino acids. Rare amino acids (e.g., tryptophan) are greatly overrepresented or underrepresented, relative to the proteomic average, in periodically expressed proteins, whereas common amino acids vary by a few percent. Genome-wide, we infer that 20,000 to 60,000 residues have been modified by this previously unappreciated pressure. This trend is strongest in ancient proteins, suggesting that oscillating endogenous amino acid availability exerted genome-wide selective pressure on protein sequences across evolutionary time
    corecore