4,469 research outputs found
A comparison of measured and calculated thermal stresses in a hybrid metal matrix composite spar cap element
A hybrid spar of titanium with an integrally brazed composite, consisting of an aluminum matrix reinforced with boron-carbide-coated fibers, was heated in an oven and the resulting thermal stresses were measured. Uniform heating of the spar in an oven resulted in thermal stresses arising from the effects of dissimilar materials and anisotropy of the metal matrix composite. Thermal stresses were calculated from a finite element structural model using anisotropic material properties deduced from constituent properties and rules of mixtures. Comparisons of calculated thermal stresses with measured thermal stresses on the spar are presented. It was shown that failure to account for anisotropy in the metal matrix composite elements would result in large errors in correlating measured and calculated thermal stresses. It was concluded that very strong material characterization efforts are required to predict accurate thermal stresses in anisotropic composite structures
To what extent does the self-consistent mean-field exist?
A non-convergent difficulty near level-repulsive region is discussed within
the self-consistent mean-field theory. It is shown by numerical and analytic
studies that the mean-field is not realized in the many-fermion system when
quantum fluctuations coming from two-body residual interaction and quadrupole
deformation are larger than an energy difference between two avoided crossing
orbits. An analytic condition indicating a limitation of the mean-field concept
is derived for the first time
Statistical Mechanics of Dictionary Learning
Finding a basis matrix (dictionary) by which objective signals are
represented sparsely is of major relevance in various scientific and
technological fields. We consider a problem to learn a dictionary from a set of
training signals. We employ techniques of statistical mechanics of disordered
systems to evaluate the size of the training set necessary to typically succeed
in the dictionary learning. The results indicate that the necessary size is
much smaller than previously estimated, which theoretically supports and/or
encourages the use of dictionary learning in practical situations.Comment: 6 pages, 4 figure
Electromagnon and phonon excitations in multiferroic TbMnO3
We have performed Raman measurements on TbMnO3 single crystal under magnetic
field along the three crystallographic directions. The flip of the spin spiral
plane creates an electromagnon excitation. In addition to the electromagnons
induced by the Heisenberg coupling, we have detected the electromagnon created
by the Dzyaloshinskii-Moriya interaction along the c axis. We have identified
all the vibrational modes of TbMnO3. Their temperature dependences show that
only one phonon observed along the polarization axis is sensitive to the
ferroelectric transition. This mode is tied to the Tb3+ ion displacements that
contribute to the ferroelectric polarization
Critical Scale-invariance in Healthy Human Heart Rate
We demonstrate the robust scale-invariance in the probability density
function (PDF) of detrended healthy human heart rate increments, which is
preserved not only in a quiescent condition, but also in a dynamic state where
the mean level of heart rate is dramatically changing. This scale-independent
and fractal structure is markedly different from the scale-dependent PDF
evolution observed in a turbulent-like, cascade heart rate model. These results
strongly support the view that healthy human heart rate is controlled to
converge continually to a critical state.Comment: 9 pages, 3 figures. Phys. Rev. Lett., to appear (2004
Replica symmetry breaking in an adiabatic spin-glass model of adaptive evolution
We study evolutionary canalization using a spin-glass model with replica
theory, where spins and their interactions are dynamic variables whose
configurations correspond to phenotypes and genotypes, respectively. The spins
are updated under temperature T_S, and the genotypes evolve under temperature
T_J, according to the evolutionary fitness. It is found that adaptation occurs
at T_S < T_S^{RS}, and a replica symmetric phase emerges at T_S^{RSB} < T_S <
T_S^{RS}. The replica symmetric phase implies canalization, and replica
symmetry breaking at lower temperatures indicates loss of robustness.Comment: 5pages, 2 figure
Beyond homozygosity mapping: family-control analysis based on Hamming distance for prioritizing variants in exome sequencing
A major challenge in current exome sequencing in autosomal recessive (AR) families is the lack of an effective method to prioritize single-nucleotide variants (SNVs). AR families are generally too small for linkage analysis, and length of homozygous regions is unreliable for identification of causative variants. Various common filtering steps usually result in a list of candidate variants that cannot be narrowed down further or ranked. To prioritize shortlisted SNVs we consider each homozygous candidate variant together with a set of SNVs flanking it. We compare the resulting array of genotypes between an affected family member and a number of control individuals and argue that, in a family, differences between family member and controls should be larger for a pathogenic variant and SNVs flanking it than for a random variant. We assess differences between arrays in two individuals by the Hamming distance and develop a suitable test statistic, which is expected to be large for a causative variant and flanking SNVs. We prioritize candidate variants based on this statistic and applied our approach to six patients with known pathogenic variants and found these to be in the top 2 to 10 percentiles of ranks
The Metal-Insulator Transition of NbO2: an Embedded Peierls Instability
Results of first principles augmented spherical wave electronic structure
calculations for niobium dioxide are presented. Both metallic rutile and
insulating low-temperature NbO2, which crystallizes in a distorted rutile
structure, are correctly described within density functional theory and the
local density approximation. Metallic conductivity is carried to equal amounts
by metal t_{2g} orbitals, which fall into the one-dimensional d_parallel band
and the isotropically dispersing e_{g}^{pi} bands. Hybridization of both types
of bands is almost negligible outside narrow rods along the line X--R. In the
low-temperature phase splitting of the d_parallel band due to metal-metal
dimerization as well as upshift of the e_{g}^{pi} bands due to increased p-d
overlap remove the Fermi surface and open an optical band gap of about 0.1 eV.
The metal-insulator transition arises as a Peierls instability of the
d_parallel band in an embedding background of e_{g}^{pi} electrons. This basic
mechanism should also apply to VO2, where, however, electronic correlations are
expected to play a greater role due to stronger localization of the 3d
electrons.Comment: 4 pages, revtex, 6 eps figures, additional material avalable at
http://www.physik.uni-augsburg.de/~eyert
- …