185 research outputs found

    The Landau problem and noncommutative quantum mechanics

    Full text link
    The conditions under which noncommutative quantum mechanics and the Landau problem are equivalent theories is explored. If the potential in noncommutative quantum mechanics is chosen as V=ΩV= \Omega \aleph with \aleph defined in the text, then for the value θ~=0.22×1011cm2{\tilde \theta} = 0.22 \times 10^{-11} cm^2 (that measures the noncommutative effects of the space), the Landau problem and noncommutative quantum mechanics are equivalent theories in the lowest Landau level. For other systems one can find differents values for θ~{\tilde \theta} and, therefore, the possible bounds for θ~{\tilde \theta} should be searched in a physical independent scenario. This last fact could explain the differents bounds for θ~\tilde \theta found in the literature.Comment: This a rewritten and corrected version of our previous preprint hep-th/010517

    Noncommutative Quantum Mechanics: The Two-Dimensional Central Field

    Full text link
    Quantum mechanics in a noncommutative plane is considered. For a general two dimensional central field, we find that the theory can be perturbatively solved for large values of the noncommutative parameter (θ\theta) and explicit expressions for the eigenstates and eigenvalues are given. The Green function is explicitly obtained and we show that it can be expressed as an infinite series. For polynomial type potentials, we found a smooth limit for small values of θ\theta and for non-polynomial ones this limit is necessarily abrupt. The Landau problem, as a limit case of a noncommutative system, is also considered.Comment: new references adde

    Testing spatial noncommutativity via the Aharonov-Bohm effect

    Get PDF
    The possibility of detecting noncommutative space relics is analyzed using the Aharonov-Bohm effect. We show that, if space is noncommutative, the holonomy receives nontrivial kinematical corrections that will produce a diffraction pattern even when the magnetic flux is quantized. The scattering problem is also formulated, and the differential cross section is calculated. Our results can be extrapolated to high energy physics and the bound θ∼[ 10 TeV ]⁻² is found. If this bound holds, then noncommutative effects could be explored in scattering experiments measuring differential cross sections for small angles. The bound state Aharonov-Bohm effect is also discussed.Instituto de Física La Plat

    Density biases and temperature relations for DESIRED HII regions

    Full text link
    We present a first study based on the analysis of the DEep Spectra of Ionized REgions Database (DESIRED). This is a compilation of 190 high signal-to-noise ratio optical spectra of HII regions and other photoionized nebulae, mostly observed with 8-10m telescopes and containing \sim29380 emission lines. We find that the electron density --nen_{\rm e}-- of the objects is underestimated when [SII] λ6731/λ6716\lambda6731/\lambda6716 and/or [OII] λ3726/λ3729\lambda3726/\lambda3729 are the only density indicators available. This is produced by the non-linear density dependence of the indicators in the presence of density inhomogeneities. The average underestimate is 300\sim 300 cm3^{-3} in extragalactic HII regions, introducing systematic overestimates of TeT_{\rm e}([OII]) and TeT_{\rm e}([SII]) compared to TeT_{\rm e}([NII]). The high-sensitivity of [OII] λλ7319+20+30+31/λλ3726+29\lambda\lambda7319+20+30+31/\lambda\lambda3726+29 and [SII] λλ4069+76/λλ6716+31\lambda\lambda4069+76/\lambda\lambda6716+31 to density makes them more suitable for the diagnosis of the presence of high-density clumps. If TeT_{\rm e}([NII]) is adopted, the density underestimate has a small impact in the ionic abundances derived from optical spectra, being limited to up to \sim0.1 dex when auroral [SII] and/or [OII] lines are used. However, these density effects are critical for the analysis of infrared fine structure lines, such as those observed by the JWST in local star forming regions, implying strong underestimates of the ionic abundances. We present temperature relations between TeT_{\rm e}([OIII]), TeT_{\rm e}([ArIII]), TeT_{\rm e}([SIII]) and TeT_{\rm e}([NII]) for the extragalactic HII regions. We confirm a non-linear dependence between TeT_{\rm e}([OIII])-TeT_{\rm e}([NII]) due to a more rapid increase of TeT_{\rm e}([OIII]) at lower metallicities.Comment: Accepted for publication in MNRA

    An egg-shell bifunctional CeO2-modified NiPd/Al2O3 catalyst for petrochemical processes involving selective hydrogenation and hydroisomerization

    Get PDF
    The catalytic performance during the 1-butyne hydrogenation using two reduced Al2O3-supported Pd-based catalysts was carried out in a total recirculation system with an external fixed-bed reactor. The lab-prepared egg-shell NiPd/CeO2-Al2O3 catalyst (NiPdCe) with Pd loading = 0.5 wt%, Ni/Pd atomic ratio = 1 and CeO2 loading = 3 wt% was synthesized and characterized, and it was compared with an egg-shell Al2O3-supported Pd based commercial catalyst (PdCC). The reduced catalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. The textural characteristics and ammonia temperature-programmed desorption profiles of the fresh (unreduced) catalysts were also obtained. Both catalysts show high 1-butyne conversion and selectivity to 1-butene, but the catalysts also present important differences between hydroisomerizing and hydrogenating capabilities. NiPdCe catalyst shows higher capability for hydroisomerization reactions, while the PdCC catalyst exhibits higher hydrogenating capability. The observed catalytic performances can be interesting for some industrial processes and can provide a guideline for the development of a Pd-based catalyst with specific catalytic properties.Fil: Méndez, Franklin J.. Universidad Nacional Autónoma de México; México. Instituto Venezolano de Investigaciones Científicas; VenezuelaFil: Alves, Javier Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco". Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Ciencias Aplicadas; Argentina. Universidad Nacional de La Plata. Facultad de Ingenierí­a. Departamento de Ingeniería Química; ArgentinaFil: Rojas Challa, Yahse Vitah Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco". Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Ciencias Aplicadas; ArgentinaFil: Corona, Oscar. Universidad Nacional Autónoma de México; México. Instituto Tecnológico Venezolano Del Petróleo; VenezuelaFil: Villasana, Yanet. Instituto Venezolano de Investigaciones Científicas; Venezuela. Universidad Regional Amazonica Ikiam; EcuadorFil: Guerra, Julia. Universidad Simón Bolívar; VenezuelaFil: Garcia Colli, Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco". Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Ciencias Aplicadas; Argentina. Universidad Nacional de La Plata. Facultad de Ingenierí­a. Departamento de Ingeniería Química; ArgentinaFil: Martinez, Osvaldo Miguel. Universidad Nacional de La Plata. Facultad de Ingenierí­a. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco". Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Ciencias Aplicadas; ArgentinaFil: Brito, Joaquín L.. Instituto Venezolano de Investigaciones Científicas; Venezuel
    corecore