10,525 research outputs found
Minding the Gap: Bias, Soft Structures, and the Double Life of Social Norms
We argue that work on norms provides a way to move beyond debates between proponents of individualist and structuralist approaches to bias, oppression, and injustice. We briefly map out the geography of that debate before presenting Charlotte Witt’s view, showing how her position, and the normative ascriptivism at its heart, seamlessly connects individuals to the social reality they inhabit. We then describe recent empirical work on the psychology of norms and locate the notions of informal institutions and soft structures with respect to it. Finally, we argue that the empirical resources enrich Witt’s ascriptivism, and that the resulting picture shows theorists need not, indeed should not, choose between either the individualist or structuralist camp
Chemistry of aminoacylation of 5'-AMO and the origin of protein synthesis
Much of our recent work has been a study of aminoacyl AMP derivatives. Elucidation of the character of aminoacyl AMP derivatives has made it obvious that AMP has characteristics which should allow it to preferentially catalyze the synthesis of L-amino acid peptides. The essential features which lead to this conclusion are that all l-amino acids (but not all D amino acids) when esterified to 5'-AMP preferentially (65 percent) distribute to the 3' position of the 5'-AMP; that esterification is predominantly at the 2' position; that 2', 3' diaminoacyl esters are readily formed; and that a peptide bond can be formed between adjacent 2',3' aminoacyl esters
Toward an Improved Analytical Description of Lagrangian Bias
We carry out a detailed numerical investigation of the spatial correlation
function of the initial positions of cosmological dark matter halos. In this
Lagrangian coordinate system, which is especially useful for analytic studies
of cosmological feedback, we are able to construct cross-correlation functions
of objects with varying masses and formation redshifts and compare them with a
variety of analytical approaches. For the case in which both formation
redshifts are equal, we find good agreement between our numerical results and
the bivariate model of Scannapieco & Barkana (2002; SB02) at all masses,
redshifts, and separations, while the model of Porciani et al. (1998) does well
for all parameters except for objects with different masses at small
separations. We find that the standard mapping between Lagrangian and Eulerian
bias performs well for rare objects at all separations, but fails if the
objects are highly-nonlinear (low-sigma) peaks. In the Lagrangian case in which
the formation redshifts differ, the SB02 model does well for all separations
and combinations of masses, apart from a discrepancy at small separations in
situations in which the smaller object is formed earlier and the difference
between redshifts or masses is large. As this same limitation arises in the
standard approach to the single-point progenitor distribution developed by
Lacey & Cole (1993), we conclude that a more complete understanding of the
progenitor distribution is the most important outstanding issue in the analytic
modeling of Lagrangian bias.Comment: 22 pages, 8 figures, ApJ, in pres
Formation time distribution of dark matter haloes: theories versus N-body simulations
This paper uses numerical simulations to test the formation time distribution
of dark matter haloes predicted by the analytic excursion set approaches. The
formation time distribution is closely linked to the conditional mass function
and this test is therefore an indirect probe of this distribution. The
excursion set models tested are the extended Press-Schechter (EPS) model, the
ellipsoidal collapse (EC) model, and the non-spherical collapse boundary (NCB)
model. Three sets of simulations (6 realizations) have been used to investigate
the halo formation time distribution for halo masses ranging from dwarf-galaxy
like haloes (, where is the characteristic non-linear mass
scale) to massive haloes of . None of the models can match the
simulation results at both high and low redshift. In particular, dark matter
haloes formed generally earlier in our simulations than predicted by the EPS
model. This discrepancy might help explain why semi-analytic models of galaxy
formation, based on EPS merger trees, under-predict the number of high redshift
galaxies compared with recent observations.Comment: 7 pages, 5 figures, accepted for publication in MNRA
Identification of the YfgF MASE1 domain as a modulator of bacterial responses to aspartate
Complex 3'-5'-cyclic diguanylic acid (c-di-GMP) responsive regulatory networks that are modulated by the action of multiple diguanylate cyclases (DGC; GGDEF domain proteins) and phosphodiesterases (PDE; EAL domain proteins) have evolved in many bacteria. YfgF proteins possess a membrane-anchoring domain (MASE1), a catalytically inactive GGDEF domain and a catalytically active EAL domain. Here, sustained expression of the Salmonella enterica spp. Enterica ser. Enteritidis YfgF protein is shown to mediate inhibition of the formation of the aspartate chemotactic ring on motility agar under aerobic conditions. This phenomenon was c-di-GMP-independent because it occurred in a Salmonella strain that lacked the ability to synthesize c-di-GMP and also when PDE activity was abolished by site-directed mutagenesis of the EAL domain. YfgF-mediated inhibition of aspartate chemotactic ring formation was impaired in the altered redox environment generated by exogenous p-benzoquinone. This ability of YfgF to inhibit the response to aspartate required a motif, (213)Lys-Lys-Glu(215), in the predicted cytoplasmic loop between trans-membrane regions 5 and 6 of the MASE1 domain. Thus, for the first time the function of a MASE1 domain as a redox-responsive regulator of bacterial responses to aspartate has been shown
Measuring the Cosmic Equation of State with Counts of Galaxies
The classical dN/dz test allows the determination of fundamental cosmological
parameters from the evolution of the cosmic volume element. This test is
applied by measuring the redshift distribution of a tracer whose evolution in
number density is known. In the past, ordinary galaxies have been used as such
a tracer; however, in the absence of a complete theory of galaxy formation,
that method is fraught with difficulties. In this paper, we propose studying
instead the evolution of the apparent abundance of dark matter halos as a
function of their circular velocity, observable via the linewidths or rotation
speeds of visible galaxies. Upcoming redshift surveys will allow the linewidth
distribution of galaxies to be determined at both z~1 and the present day. In
the course of studying this test, we have devised a rapid, improved
semi-analytic method for calculating the circular velocity distribution of dark
halos based upon the analytic mass function of Sheth et al. (1999) and the
formation time distribution of Lacey & Cole (1993). We find that if selection
effects are well-controlled and minimal external constraints are applied, the
planned DEEP Redshift Survey should allow the measurement of the cosmic
equation-of-state parameter w to 10% (as little as 3% if Omega_m has been
well-determined from other observations). This type of test has the potential
also to provide a constraint on any evolution of w such as that predicted by
``tracker'' models.Comment: 4 pages plus 3 embedded figures; version approved by Ap. J. Letters.
A greatly improved error analysis has been added, along with a figure showing
complementarity to other cosmological test
Dark-Halo Cusp: Asymptotic Convergence
We propose a model for how the buildup of dark halos by merging satellites
produces a characteristic inner cusp, of a density profile \rho \prop r^-a with
a -> a_as > 1, as seen in cosmological N-body simulations of hierarchical
clustering scenarios. Dekel, Devor & Hetzroni (2003) argue that a flat core of
a<1 exerts tidal compression which prevents local deposit of satellite
material; the satellite sinks intact into the halo center thus causing a rapid
steepening to a>1. Using merger N-body simulations, we learn that this cusp is
stable under a sequence of mergers, and derive a practical tidal mass-transfer
recipe in regions where the local slope of the halo profile is a>1. According
to this recipe, the ratio of mean densities of halo and initial satellite
within the tidal radius equals a given function psi(a), which is significantly
smaller than unity (compared to being 1 according to crude resonance criteria)
and is a decreasing function of a. This decrease makes the tidal mass transfer
relatively more efficient at larger a, which means steepening when a is small
and flattening when a is large, thus causing converges to a stable solution.
Given this mass-transfer recipe, linear perturbation analysis, supported by toy
simulations, shows that a sequence of cosmological mergers with homologous
satellites slowly leads to a fixed-point cusp with an asymptotic slope a_as>1.
The slope depends only weakly on the fluctuation power spectrum, in agreement
with cosmological simulations. During a long interim period the profile has an
NFW-like shape, with a cusp of 1<a<a_as. Thus, a cusp is enforced if enough
compact satellite remnants make it intact into the inner halo. In order to
maintain a flat core, satellites must be disrupted outside the core, possibly
as a result of a modest puffing up due to baryonic feedback.Comment: 37 pages, Latex, aastex.cls, revised, ApJ, 588, in pres
The mass function
We present the mass functions for different mass estimators for a range of
cosmological models. We pay particular attention to how universal the mass
function is, and how it depends on the cosmology, halo identification and mass
estimator chosen. We investigate quantitatively how well we can relate observed
masses to theoretical mass functions.Comment: 14 pages, 12 figures, to appear in ApJ
- …