29 research outputs found
Microscopic aspects of the effect of friction reducers at the lubrication limit
An attempt is made to analytically model the physicochemical properties of lubricants and their capacity to reduce friction. A technique of frozen fracturing of the lubricants was employed to study the dispersion of additives throughout a lubricant. Adsorption was observed at the liquid-solid interface, which was the region where the solid and lubricant met, and the molecular dispersion of the additive enhanced the effectiveness of the lubricant. The electrically conductive characteristics of the lubricant at the friction interface indicated the presence of tunneling effects. The Bethe model was used to examine the relationship between the coefficient of friction and the variation of interface thickness. The electron transport permitted an inelastic tunnel electron spectroscopic investigation of the molecular transformations undergone by the additive during friction episodes
Tribological properties of room temperature fluorinated graphite heat-treated under fluorine atmosphere
This work is concerned with the study of the tribologic properties of room temperature fluorinated graphite heat-treated under fluorine atmosphere. The fluorinated compounds all present good intrinsic friction properties (friction coefficient in the range 0.05–0.09). The tribologic performances are optimized if the materials present remaining graphitic domains (influenced by the presence of intercalated fluorinated species) whereas the perfluorinated compounds, where the fluorocarbon layers are corrugated (armchair configuration of the saturated carbon rings) present higher friction coefficients. Raman analyses reveal that the friction process induces severe changes in the materials structure especially the partial re-building of graphitic domains in the case of perfluorinated compounds which explains the improvement of μ during the friction tests for these last materials
Contribution to the understanding of tribological properties of graphite intercalation compounds with metal chloride
Intrinsic tribological properties of lamellar compounds are usually attributed to the presence of van der Waals gaps in their structure through which interlayer interactions are weak. The controlled variation of the distances and interactions between graphene layers by intercalation of electrophilic species in graphite is used in order to explore more deeply the friction reduction properties of low-dimensional compounds. Three graphite intercalation compounds with antimony pentachloride, iron trichloride and aluminium trichloride are studied. Their tribological properties are correlated to their structural parameters, and the interlayer interactions are deduced from ab initio bands structure calculations
I. Jubault In-situ Pressure Measurements Using Raman Microspectroscopy in a Rolling Elastohydrodynamic Contact
The physical conditions (pressure, shear stress, temperature
ROLE OF IRON IN THE AMORPHIZATION PROCESS IN FRICTION-INDUCED PHOSPHATE GLASSES
No abstract availabl
In-situ Pressure Measurements Using Raman Microspectroscopy in a Rolling Elastohydrodynamic Contact
International audienc
Quantitative characterization of friction coefficient using lateral force microscope in the wearless regime
International audienc