78 research outputs found

    Restoration of axon conduction and motor deficits by therapeutic treatment with glatiramer acetate.

    Get PDF
    Glatiramer acetate (GA; Copaxone) is an approved drug for the treatment of multiple sclerosis (MS). The underlying multifactorial anti-inflammatory, neuroprotective effect of GA is in the induction of reactive T cells that release immunomodulatory cytokines and neurotrophic factors at the injury site. These GA-induced cytokines and growth factors may have a direct effect on axon function. Building on previous findings that suggest a neuroprotective effect of GA, we assessed the therapeutic effects of GA on brain and spinal cord pathology and functional correlates using the chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Therapeutic regimens were utilized based on promising prophylactic efficacy. More specifically, C57BL/6 mice were treated with 2 mg/mouse/day GA for 8 days beginning at various time points after EAE post-induction day 15, yielding a thorough, clinically relevant assessment of GA efficacy within the context of severe progressive disease. Therapeutic treatment with GA significantly decreased clinical scores and improved rotorod motor performance in EAE mice. These functional improvements were supported by an increase in myelinated axons and fewer amyloid precursor protein-positive axons in the spinal cords of GA-treated EAE mice. Furthermore, therapeutic GA decreased microglia/macrophage and T cell infiltrates and increased oligodendrocyte numbers in both the spinal cord and corpus callosum of EAE mice. Finally, GA improved callosal axon conduction and nodal protein organization in EAE. Our results demonstrate that therapeutic GA treatment has significant beneficial effects in a chronic mouse model of MS, in which its positive effects on both myelinated and non-myelinated axons results in improved axon function

    The Number Systems Tower

    Get PDF
    For high school and college instructors and students, this paper connects number systems, field axioms, and polynomials. It also considers other properties such as cardinality, density, subset, and superset relationships. Additional aspects of this paper include gains and losses through sequences of number systems. The paper ends with a great number of activities for classroom use

    Mechanistic Systems Modeling to Improve Understanding and Prediction of Cardiotoxicity Caused by Targeted Cancer Therapeutics

    Get PDF
    Tyrosine kinase inhibitors (TKIs) are highly potent cancer therapeutics that have been linked with serious cardiotoxicity, including left ventricular dysfunction, heart failure, and QT prolongation. TKI-induced cardiotoxicity is thought to result from interference with tyrosine kinase activity in cardiomyocytes, where these signaling pathways help to control critical processes such as survival signaling, energy homeostasis, and excitation–contraction coupling. However, mechanistic understanding is limited at present due to the complexities of tyrosine kinase signaling, and the wide range of targets inhibited by TKIs. Here, we review the use of TKIs in cancer and the cardiotoxicities that have been reported, discuss potential mechanisms underlying cardiotoxicity, and describe recent progress in achieving a more systematic understanding of cardiotoxicity via the use of mechanistic models. In particular, we argue that future advances are likely to be enabled by studies that combine large-scale experimental measurements with Quantitative Systems Pharmacology (QSP) models describing biological mechanisms and dynamics. As such approaches have proven extremely valuable for understanding and predicting other drug toxicities, it is likely that QSP modeling can be successfully applied to cardiotoxicity induced by TKIs. We conclude by discussing a potential strategy for integrating genome-wide expression measurements with models, illustrate initial advances in applying this approach to cardiotoxicity, and describe challenges that must be overcome to truly develop a mechanistic and systematic understanding of cardiotoxicity caused by TKIs

    Who wants a slimmer body? The relationship between body weight status, education level and body shape dissatisfaction among young adults in Hong Kong

    Get PDF
    Background: Body shape dissatisfaction has been thought to have an indispensable impact on weight control behaviors. We investigated the prevalence of body shape dissatisfaction (BSD) and explored its association with weight status, education level and other determinants among young adults in Hong Kong. Methods. Information on anthropometry, BSD, and socio-demographics was collected from a random sample of 1205 young adults (611 men and 594 women) aged 18-27 in a community-based household survey. BSD was defined as a discrepancy between current and ideal body shape based on a figure rating scale. Cross-tabulations, homogeneity tests and logistic regression models were applied. Results: The percentages of underweight men and women were 16.5% and 34.9% respectively, and the corresponding percentages of being overweight or obese were 26.7% and 13.2% for men and women respectively. Three-quarters of young adults had BSD. Among women, 30.9% of those underweight and 75.5% of those with normal weight desired a slimmer body shape. Overweight men and underweight women with lower education level were more likely to have a mismatch between weight status and BSD than those with higher education level. After controlling for other determinants, underweight women were found to have a higher likelihood to maintain their current body shapes than other women. Men were found to be less likely to have a mismatch between weight status and BSD than women. Conclusions: Overweight and obesity in men and underweight in women were prevalent among Hong Kong young adults. Inappropriate body shape desire might predispose individuals to unhealthy weight loss or gain behaviors. Careful consideration of actual weight status in body shape desire is needed in health promotion and education, especially for underweight and normal weight women and those with a low education level. © 2011 Cheung et al; licensee BioMed Central Ltd.published_or_final_versio

    OPTICAL FIBER ARTERIAL PULSE WAVE SENSOR

    No full text
    An optical fiber arterial pulse wave sensor is proposed using an in-line Michelson interferometer that is a hollow optical fiber spliced to a single-mode fiber at one end and cleaved at the other end. The proposed optical fiber arterial pulse wave sensor consists of an in-line Michelson interferometer and steel reinforcement enclosed in a heat-shrinkable tube. The sensor was directly attached onto a wrist and signals corresponding to arterial pulse waves successfully obtained. The signal-to-noise ratio of the sensor signals was better than 20 dB. © 2010 Wiley Periodicals, Inc.

    Graphing the Remainder

    No full text
    Employing the Remainder Theorem, analytic and graphical tools, and dynamic applets, this paper investigates when the graphs of rational functions intersect horizontal, oblique, and curved asymptotes. Additionally, we consider how the respective remainder function perturbs the asymptotic function to producethe rational function. Dynamic applets assist in the development of the ideas herein. Finally, this paper endswith a significant number of student investigations
    corecore