96 research outputs found

    The Guaymas Basin Hiking Guide to Hydrothermal Mounds, Chimneys, and Microbial Mats: Complex Seafloor Expressions of Subsurface Hydrothermal Circulation

    Get PDF
    The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heat flow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for comprehensive surveys of the wider spreading region

    Identification of a lysosomal pathway regulating degradation of the bone morphogenetic protein receptor type II.

    Get PDF
    Bone morphogenetic proteins (BMPs) are critically involved in early development and cell differentiation. In humans, dysfunction of the bone morphogenetic protein type II receptor (BMPR-II) is associated with pulmonary arterial hypertension (PAH) and neoplasia. The ability of Kaposi sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi sarcoma and primary effusion lymphoma, to down-regulate cell surface receptor expression is well documented. Here we show that KSHV infection reduces cell surface BMPR-II. We propose that this occurs through the expression of the viral lytic gene, K5, a ubiquitin E3 ligase. Ectopic expression of K5 leads to BMPR-II ubiquitination and lysosomal degradation with a consequent decrease in BMP signaling. The down-regulation by K5 is dependent on both its RING domain and a membrane-proximal lysine in the cytoplasmic domain of BMPR-II. We demonstrate that expression of BMPR-II protein is constitutively regulated by lysosomal degradation in vascular cells and provide preliminary evidence for the involvement of the mammalian E3 ligase, Itch, in the constitutive degradation of BMPR-II. Disruption of BMP signaling may therefore play a role in the pathobiology of diseases caused by KSHV infection, as well as KSHV-associated tumorigenesis and vascular disease

    Microbial Communities Under Distinct Thermal and Geochemical Regimes in Axial and Off-Axis Sediments of Guaymas Basin

    Get PDF
    Cold seeps and hydrothermal vents are seafloor habitats fueled by subsurface energy sources. Both habitat types coexist in Guaymas Basin in the Gulf of California, providing an opportunity to compare microbial communities with distinct physiologies adapted to different thermal regimes. Hydrothermally active sites in the southern Guaymas Basin axial valley, and cold seep sites at Octopus Mound, a carbonate mound with abundant methanotrophic cold seep fauna at the Central Seep location on the northern off-axis flanking regions, show consistent geochemical and microbial differences between hot, temperate, cold seep, and background sites. The changing microbial actors include autotrophic and heterotrophic bacterial and archaeal lineages that catalyze sulfur, nitrogen, and methane cycling, organic matter degradation, and hydrocarbon oxidation. Thermal, biogeochemical, and microbiological characteristics of the sampling locations indicate that sediment thermal regime and seep-derived or hydrothermal energy sources structure the microbial communities at the sediment surface

    Microbial communities under distinct thermal and geochemical regimes in axial and off-axis sediments of Guaymas Basin

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Teske, A., Wegener, G., Chanton, J. P., White, D., MacGregor, B., Hoer, D., de Beer, D., Zhuang, G., Saxton, M. A., Joye, S. B., Lizarralde, D., Soule, S. A., & Ruff, S. E. Microbial communities under distinct thermal and geochemical regimes in axial and off-axis sediments of Guaymas Basin. Frontiers in Microbiology, 12, (2021): 633649, https://doi.org/10.3389/fmicb.2021.633649.Cold seeps and hydrothermal vents are seafloor habitats fueled by subsurface energy sources. Both habitat types coexist in Guaymas Basin in the Gulf of California, providing an opportunity to compare microbial communities with distinct physiologies adapted to different thermal regimes. Hydrothermally active sites in the southern Guaymas Basin axial valley, and cold seep sites at Octopus Mound, a carbonate mound with abundant methanotrophic cold seep fauna at the Central Seep location on the northern off-axis flanking regions, show consistent geochemical and microbial differences between hot, temperate, cold seep, and background sites. The changing microbial actors include autotrophic and heterotrophic bacterial and archaeal lineages that catalyze sulfur, nitrogen, and methane cycling, organic matter degradation, and hydrocarbon oxidation. Thermal, biogeochemical, and microbiological characteristics of the sampling locations indicate that sediment thermal regime and seep-derived or hydrothermal energy sources structure the microbial communities at the sediment surface.Research on Guaymas Basin in the Teske lab is supported by NSF Molecular and cellular Biology grant 1817381 “Collaborative Research: Next generation physiology: a systems-level understanding of microbes driving carbon cycling in marine sediments”. Sampling in Guaymas Basin was supported by collaborative NSF Biological Oceanography grants 1357238 and 1357360 “Collaborative Research: Microbial carbon cycling and its interaction with sulfur and nitrogen transformations in Guaymas Basin hydrothermal sediments” to AT and SJ, respectively. SER was supported by an AITF/Eyes High Postdoctoral Fellowship and start-up funds provided by the Marine Biological Laboratory

    Level of arterial ligation in total mesorectal excision (TME): an anatomical study

    Get PDF
    Introduction: High-tie ligation is a common practice in rectal cancer surgery. However, it compromises perfusion of the proximal limb of the anastomosis. This anatomical study was designed to assess the value of low-tie ligation in order to obtain a tension-free anastomosis. Materials and methods: Consecutive high- and low-tie resections were performed on 15 formalin-fixed specimens, with or without splenic flexure mobilization. If the proximal colon limb could reach the superior aspect of the symphysis pubis with more than 3 cm, the limb would be long enough for a tension-free colorectal anastomosis. Results: In 80% of cases, it was not necessary to perform high-tie ligation as sufficient length was gained with low-tie ligation. The descending branch of the left colic artery was the limiting factor in the other 20% of cases. Resecting half the sigmoid resulted in four times as many tension-free anastomoses after low-tie resection. Conclusion: In the majority of cases, it was not necessary to perform high-tie ligation in order to create a tension-free anastomosis. Low-tie ligation was applicable in 80% of cases and might prevent anastomotic leakage due to insufficient blood supply of the proximal colon limb

    Carbonate-hosted microbial communities are prolific and pervasive methane oxidizers at geologically diverse marine methane seep sites

    Get PDF
    At marine methane seeps, vast quantities of methane move through the shallow subseafloor, where it is largely consumed by microbial communities. This process plays an important role in global methane dynamics, but we have yet to identify all of the methane sinks in the deep sea. Here, we conducted a continental-scale survey of seven geologically diverse seafloor seeps and found that carbonate rocks from all sites host methane-oxidizing microbial communities with substantial methanotrophic potential. In laboratory-based mesocosm incubations, chimney-like carbonates from the newly described Point Dume seep off the coast of Southern California exhibited the highest rates of anaerobic methane oxidation measured to date. After a thorough analysis of physicochemical, electrical, and biological factors, we attribute this substantial metabolic activity largely to higher cell density, mineral composition, kinetic parameters including an elevated Vmax, and the presence of specific microbial lineages. Our data also suggest that other features, such as electrical conductance, rock particle size, and microbial community alpha diversity, may influence a sample's methanotrophic potential, but these factors did not demonstrate clear patterns with respect to methane oxidation rates. Based on the apparent pervasiveness within seep carbonates of microbial communities capable of performing anaerobic oxidation of methane, as well as the frequent occurrence of carbonates at seeps, we suggest that rock-hosted methanotrophy may be an important contributor to marine methane consumption.https://www.pnas.org/content/118/25/e200685711

    A historically controlled, single-arm, multi-centre, prospective trial to evaluate the safety and efficacy of MonoMax® suture material for abdominal wall closure after primary midline laparotomy. ISSAAC-Trial [NCT005725079]

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several randomized controlled trials have compared different suture materials and techniques for abdominal wall closure with respect to the incidence of incisional hernias after midline laparotomy and shown that it remains, irrespective of the methods used, considerably high, ranging from 9% to 20%. The development of improved suture materials which would reduce postoperative complications may help to lower its frequency.</p> <p>Design</p> <p>This is a historically controlled, single-arm, multi-centre, prospective trial to evaluate the safety of MonoMax<sup>® </sup>suture material for abdominal wall closure in 150 patients with primary elective midline incisions. INSECT patients who underwent abdominal closure using Monoplus<sup>® </sup>and PDS<sup>® </sup>will serve as historical control group. The incidences of wound infections and of burst abdomen are defined as composite primary endpoints. Secondary endpoints are the frequency of incisional hernias within one year after operation and safety. To ensure adequate comparability in surgical performance and recruitment, the 4 largest centres of the INSECT-Trial will participate. After hospital discharge, the investigators will examine the enrolled patients again at 30 days and at 12 ± 1 months after surgery.</p> <p>Conclusion</p> <p>This historically controlled, single-arm, multi-centre, prospective ISSAAC trial aims to assess whether the use of an ultra-long-lasting absorbable monofilament suture material is safe and efficient.</p> <p>Trial registration</p> <p>NCT005725079</p

    Hernia fibroblasts lack β-estradiol induced alterations of collagen gene expression

    Get PDF
    BACKGROUND: Estrogens are reported to increase type I and type III collagen deposition and to regulate Metalloproteinase 2 (MMP-2) expression. These proteins are reported to be dysregulated in incisional hernia formation resulting in a significantly decreased type I to III ratio. We aimed to evaluate the β-estradiol mediated regulation of type I and type III collagen genes as well as MMP-2 gene expression in fibroblasts derived from patients with or without history of recurrent incisional hernia disease. We compared primary fibroblast cultures from male/female subjects without/without incisional hernia disease. RESULTS: Incisional hernia fibroblasts (IHFs) revealed a decreased type I/III collagen mRNA ratio. Whereas fibroblasts from healthy female donors responded to β-estradiol, type I and type III gene transcription is not affected in fibroblasts from males or affected females. Furthermore β-estradiol had no influence on the impaired type I to III collagen ratio in fibroblasts from recurrent hernia patients. CONCLUSION: Our results suggest that β-estradiol does not restore the imbaired balance of type I/III collagen in incisional hernia fibroblasts. Furthermore, the individual was identified as an independent factor for the β-estradiol induced alterations of collagen gene expression. The observation of gender specific β-estradiol-dependent changes of collagen gene expression in vitro is of significance for future studies of cellular response
    • …
    corecore