1,230 research outputs found

    Light aircraft sound transmission study

    Get PDF
    The plausibility of using the two microphone sound intensity technique to study noise transmission into light aircraft was investigated. In addition, a simple model to predict the interior sound pressure level of the cabin was constructed

    Young Entrepreneurship in Philadelphia

    Get PDF
    A contemporary case study in starting a small business in Philadelphia. The paper focuses on my experiences as an artist and centers on a pop-up exhibition held July 15th 2017

    Light aircraft sound transmission study

    Get PDF
    The revived interest in the design of propeller driven aircraft is based on increasing fuel prices as well as on the need for bigger short haul and commuter aircraft. A major problem encountered with propeller driven aircraft is propeller and exhaust noise that is transmitted through the fuselage sidewall structure. Part of the work which was conducted during the period April 1 to August 31, 1983, on the studies of sound transmission through light aircraft walls is presented

    Sensible heat measurements indicating depth and magnitude of subsurface soil water evaporation

    Get PDF
    Most measurement approaches for determining evaporation assume that the latent heat flux originates from the soil surface. Here, a new method is described for determining in situ soil water evaporation dynamics from fine-scale measurements of soil temperature and thermal properties with heat pulse sensors. A sensible heat balance is computed using soil heat flux density at two depths and change in sensible heat storage in between; the sensible heat balance residual is attributed to latent heat from evaporation of soil water. Comparisons between near-surface soil heat flux density and Bowen ratio energy balance measurements suggest that evaporation originates below the soil surface several days after rainfall. The sensible heat balance accounts for this evaporation dynamic in millimeter-scale depth increments within the soil. Comparisons of sensible heat balance daily evaporation estimates to Bowen ratio and mass balance estimates indicate strong agreement (r2 = 0.96, root-mean-square error = 0.20 mm). Potential applications of this technique include location of the depth and magnitude of subsurface evaporation fluxes and estimation of stage 2–3 daily evaporation without requirements for large fetch. These applications represent new contributions to vadose zone hydrology

    Sensible Heat Observations Reveal Soil-Water Evaporation Dynamics

    Get PDF
    Soil-water evaporation is important at scales ranging from microbial ecology to large-scale climate. Yet routine measurements are unable to capture rapidly shifting near-surface soil heat and water processes involved in soil-water evaporation. The objective of this study was to determine the depth and location of the evaporation zone within soil. Three-needle heat-pulse sensors were used to monitor soil heat capacity, thermal conductivity, and temperature below a bare soil surface in central Iowa during natural wetting/drying cycles. Soil heat flux and changes in heat storage were calculated from these data to obtain a balance of sensible heat components. The residual from this balance, attributed to latent heat from water vaporization, provides an estimate of in situ soil-water evaporation. As the soil dried following rainfall, results show divergence in the soil sensible heat flux with depth. Divergence in the heat flux indicates the location of a heat sink associated with soil-water evaporation. Evaporation estimates from the sensible heat balance provide depth and time patterns consistent with observed soil-water depletion patterns. Immediately after rainfall, evaporation occurred near the soil surface. Within 6 days after rainfall, the evaporation zone proceeded \u3e 13 mm into the soil profile. Evaporation rates at the 3-mm depth reached peak values \u3e 0.25 mm h−1. Evaporation occurred simultaneously at multiple measured depth increments, but with time lag between peak evaporation rates for depths deeper below the soil surface. Implementation of finescale measurement techniques for the soil sensible heat balance provides a new opportunity to improve understanding of soil-water evaporation

    First contemporary case of human infection with Cryptococcus gattii in Puget Sound: Evidence for spread of the Vancouver Island outbreak

    Get PDF
    We report a case of cryptococcosis due to C. gattii which appears to have been acquired in the Puget Sound region, Washington State. Genotyping confirmed identity to the predominant Vancouver Island genotype. This is the first documented case of human disease by the major Vancouver Island emergence strain acquired within the United States

    Sensible Heat Balance Measurements of Soil Water Evaporation beneath a Maize Canopy

    Get PDF
    Soil water evaporation is an important component of the water budget in cropped fields; few methods are available for continuous and independent measurement. A sensible heat balance (SHB) approach has been demonstrated for continuously determining soil water evaporation under bare surface conditions. Applicability of SHB measurements beneath a crop canopy cover has not been evaluated. We tested SHB using heat-pulse sensors to estimate evaporation beneath a full maize (Zea mays L.) canopy. We also implemented a modified SHB approach incorporating below-canopy net radiation, which extended the range of conditions under which SHB is applicable. Evaporation was measured at three positions: row (R), interrow (I), and interrow with roots excluded (IE). Evaporation rates were generally small, averaging −1 across all dates, positions, and measurement methods during the drying period. The SHB evaporation estimates varied among R, I, and IE, with cumulative totals of 4.4, 7.4, and 7.9 mm, respectively, during a 12-d drying period. Lower soil water contents from plant water uptake reduced evaporation rates at R more appreciably with time than at the other positions; I and IE provided similar evaporation patterns. The SHB evaporation estimates at R and I were compared with microlysimeter data on 8 d. Correlation between approaches was modest (r2 = 0.61) but significant (p \u3c 0.001) when compared separately at R and I positions. Correlation was improved (r2 = 0.81) when evaporation estimates were combined across positions, with differences between SHB and microlysimeters typically within the range of values obtained from microlysimeter replicates. Overall, the results suggest good potential for using SHB and modified SHB approaches to determine soil water evaporation in a cropped field. The SHB approach allowed continuous daily estimates of evaporation, separate from evapotranspiration and without destructive sampling

    Bare Soil Carbon Dioxide Fluxes with Time and Depth Determined by High-Resolution Gradient-Based Measurements and Surface Chambers

    Get PDF
    Soil CO2 production rates and fluxes vary with time and depth. The shallow near-surface soil layer is important for myriad soil processes, yet knowledge of dynamic CO2 concentrations and fluxes in this complex zone is limited. We used a concentration gradient method (CGM) to determine CO2 production and effluxes with depth in shallow layers of a bare soil. The CO2concentration was continuously measured at 13 depths in the 0- to 200-mm soil layer. For an 11-d period, 2% of the soil CO2 was produced below a depth of 175 mm, 8% was produced in the 50- to 175-mm soil layer, and 90% was produced in the 0- to 50-mm soil layer. Soil CO2concentration showed similar diurnal patterns with temperature in deeper soil layers and out-of-phase diurnal patterns in surface soil layers. Soil CO2 flux from most of the soil layers can be described by an exponential function of soil temperature, with temperature sensitivity (Q10) ranging from 1.40 to 2.00 (1.62 ± 0.17). The temperature-normalized CO2 fluxes are related to soil water content with a positive linear relationship in surface soil layers and a negative relationship in deep soil layers. The CO2 fluxes from CGM and chamber methods had good agreement at multiple time scales, which showed that the CGM method was able to estimate near-surface soil CO2 fluxes and production. The contrasting patterns between surface and deep layers of soil CO2 concentration and fluxes suggest the necessity of intensive CO2concentration measurements in the surface soil layer for accurate determination of soil-atmosphere CO2 flux when using the CGM

    Cumulative Soil Water Evaporation as a Function of Depth and Time

    Get PDF
    Soil water evaporation is an important component of the surface water balance and the surface energy balance. Accurate and dynamic measurements of soil water evaporation enhance the understanding of water and energy partitioning at the land–atmosphere interface. The objective of this study was to measure the cumulative soil water evaporation with time and depth in a bare field. Cumulative water evaporation at the soil surface was measured by the Bowen ratio method. Subsurface cumulative soil water evaporation was determined with the heat pulse method at fine-scale depth increments. Following rainfall, the subsurface cumulative evaporation curves followed a pattern similar to the surface cumulative evaporation curve, with approximately a 2-d lag before evaporation was indicated at the 3- and 9-mm soil depths, and several more days\u27 delay in deeper soil layers. For a 21-d period in 2007, the cumulative evaporation totals at soil depths of 0, 3, 9, 15, and 21 mm were 60, 44, 29, 13, and 8 mm, respectively. For a 16-d period in 2008, the cumulative evaporation totals at soil depths of 0, 3, 9, 15, and 21 mm were 32, 25, 16, 10, and 5 mm, respectively. Cumulative evaporation results from the Bowen ratio and heat pulse methods indicated a consistent dynamic pattern for surface and subsurface water evaporation with both time and depth. These findings suggest that heat pulse sensors can accurately measure subsurface soil water evaporation during several wetting–drying cycles

    Gonadotrophin-releasing hormone receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    GnRH1 and GnRH2 receptors (provisonal nomenclature [35], also called Type I and Type II GnRH receptor, respectively [78]) have been cloned from numerous species, most of which express two or three types of GnRH receptor [78, 77, 107]. GnRH I (p-Glu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2) is a hypothalamic decapeptide also known as luteinizing hormone-releasing hormone, gonadoliberin, luliberin, gonadorelin or simply as GnRH. It is a member of a family of similar peptides found in many species [78, 77, 107] including GnRH II (pGlu-His-Trp-Ser-His-Gly-Trp-Tyr-Pro-Gly-NH2 (which is also known as chicken GnRH-II). Receptors for three forms of GnRH exist in some species but only GnRH I and GnRH II and their cognate receptors have been found in mammals [78, 77, 107]. GnRH1 receptors are expressed by pituitary gonadotrophs, where they mediate the effects of GnRH on gonadotropin hormone synthesis and secretion that underpin central control of mammalian reproduction. GnRH analogues are used in assisted reproduction and to treat steroid hormone-dependent conditions [53]. Notably, agonists cause desensitization of GnRH-stimulated gonadotropin secretion and the consequent reduction in circulating sex steroids is exploited to treat hormone-dependent cancers of the breast, ovary and prostate [53]. GnRH1 receptors are selectively activated by GnRH I and all lack the COOH-terminal tails found in other GPCRs. GnRH2 receptors do have COOH-terminal tails and (where tested) are selective for GnRH II over GnRH I. GnRH2 receptors are expressed by some primates but not by humans [81]. Phylogenetic classifications divide GnRH receptors into three [78] or five groups [122] and highlight examples of gene loss through evolution, with humans retaining only one ancient gene
    • …
    corecore