7,096 research outputs found

    Propagation of High-Frequency Electromagnetic Waves Through a Magnetized Plasma in Curved Spaces-Time. II. Application of the Asymptotic Approximation

    Get PDF
    This is the second of two papers on the propagation of high-frequency electromagnetic waves through an inhomogeneous, non-stationary plasma in curved space-time. By applying the general two-scale W.K.B. method developed in part I to the basic wave equation, derived also in that paper, we here obtain the dispersion relation, the rays, the polarization states and the transport laws for the amplitudes of these waves. In an unmagnetized plasma the transport preserves the helicity and the eccentricity of the polarization state along each ray; the axes of the polarization ellipse rotate along a ray, relative to quasiparallely displaced directions, at a rate determined by the vorticity of the electron fluid; and the norm of the amplitude changes according to a conservation law which can be interpreted as the constancy of the number of quasiphotons. In a magnetized plasma the polarization state changes differently for ordinary and extraordinary waves, according to the angle between the wavenormal and the background magnetic field, and under specified approximation conditions the direction of polarization of linearly polarized waves undergoes a generalized Faraday rotation

    A quantum jump description for the non-Markovian dynamics of the spin-boson model

    Full text link
    We derive a time-convolutionless master equation for the spin-boson model in the weak coupling limit. The temporarily negative decay rates in the master equation indicate short time memory effects in the dynamics which is explicitly revealed when the dynamics is studied using the non-Markovian jump description. The approach gives new insight into the memory effects influencing the spin dynamics and demonstrates, how for the spin-boson model the the co-operative action of different channels complicates the detection of memory effects in the dynamics.Comment: 9 pages, 6 figures, submitted to Proceedings of CEWQO200

    Non-Markovian generalization of the Lindblad theory of open quantum systems

    Full text link
    A systematic approach to the non-Markovian quantum dynamics of open systems is given by the projection operator techniques of nonequilibrium statistical mechanics. Combining these methods with concepts from quantum information theory and from the theory of positive maps, we derive a class of correlated projection superoperators that take into account in an efficient way statistical correlations between the open system and its environment. The result is used to develop a generalization of the Lindblad theory to the regime of highly non-Markovian quantum processes in structured environments.Comment: 10 pages, 1 figure, replaced by published versio

    Correlated projection operator approach to non-Markovian dynamics in spin baths

    Full text link
    The dynamics of an open quantum system is usually studied by performing a weak-coupling and weak-correlation expansion in the system-bath interaction. For systems exhibiting strong couplings and highly non-Markovian behavior this approach is not justified. We apply a recently proposed correlated projection superoperator technique to the model of a central spin coupled to a spin bath via full Heisenberg interaction. Analytical solutions to both the Nakajima-Zwanzig and the time-convolutionless master equation are determined and compared with the results of the exact solution. The correlated projection operator technique significantly improves the standard methods and can be applied to many physical problems such as the hyperfine interaction in a quantum dot

    Spintronics-based mesoscopic heat engine

    Get PDF
    We consider a nanowire suspended on two spin-polarized leads and subject to a nonuniform magnetic field. We show that in such a system a temperature drop between leads can significantly affect the nanowire dynamics. In particular, it is demonstrated that under certain conditions the stationary distribution of the mechanical subsystem has Boltzmann form with effective temperature which is smaller than the temperature of the "cold" lead; this seems rather counterintuitive. We also find that the change of the direction of the temperature gradient results in generation of mechanical vibrations rather than heating of the mechanical subsystem.Comment: 5 pages, 3 figure

    Initial state preparation with dynamically generated system-environment correlations

    Full text link
    The dependence of the dynamics of open quantum systems upon initial correlations between the system and environment is an utterly important yet poorly understood subject. For technical convenience most prior studies assume factorizable initial states where the system and its environments are uncorrelated, but these conditions are not very realistic and give rise to peculiar behaviors. One distinct feature is the rapid build up or a sudden jolt of physical quantities immediately after the system is brought in contact with its environments. The ultimate cause of this is an initial imbalance between system-environment correlations and coupling. In this note we demonstrate explicitly how to avoid these unphysical behaviors by proper adjustments of correlations and/or the coupling, for setups of both theoretical and experimental interest. We provide simple analytical results in terms of quantities that appear in linear (as opposed to affine) master equations derived for factorized initial states.Comment: 6 pages, 2 figure

    Open XXZ spin chain: Nonequilibrium steady state and strict bound on ballistic transport

    Full text link
    Explicit matrix product ansatz is presented, in first two orders in the (weak) coupling parameter, for the non-equilibrium steady state of the homogeneous, nearest neighbor Heisenberg XXZ spin-1/2 chain driven by Lindblad operators which act only at the edges of the chain. The first order of the density operator becomes in thermodynamic limit an exact pseudo-local conservation law and yields -- via Mazur inequality -- a rigorous lower bound on the high temperature spin Drude weight. Such Mazur bound is a non-vanishing fractal function of the anisotropy parameter Delta for |Delta|<1.Comment: Slightly longer but essentially equivalent to a published versio

    Witness for initial system-environment correlations in open system dynamics

    Full text link
    We study the evolution of a general open quantum system when the system and its environment are initially correlated. We show that the trace distance between two states of the open system can increase above its initial value, and derive tight upper bounds for the growth of the distinguishability of open system states. This represents a generalization of the contraction property of quantum dynamical maps. The obtained inequalities can be interpreted in terms of the exchange of information between the system and the environment, and lead to a witness for system-environment correlations which can be determined through measurements on the open system alone.Comment: 4 pages, 1 figur
    • …
    corecore